IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p457-d721186.html
   My bibliography  Save this article

Flowing Refractometer for Feed Water State Control in the Second Loop of Nuclear Reactor

Author

Listed:
  • Vadim Davydov

    (Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
    All Russian Research Institute of Phytopathology, 143050 Moscow, Russia)

  • Irena Gureeva

    (Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Roman Davydov

    (Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Valentin Dudkin

    (Department of Photonics and Communication Lines, The Bonch-Bruevich Saint Petersburg State University of Telecommunication, 193232 St. Petersburg, Russia)

Abstract

The necessity to control the feed water state in the second loop of a nuclear power plant nuclear reactor is justified. The different methods of the state control of flowing water in the pipeline are reviewed. It has been established that controlling the feed water state should not result in irreversible changes in its chemical composition and physical structure. A change in the composition or structure of feed water leads to a change in its heat capacity. The heat transfer deteriorates, the production of electrical energy in the installation decreases, and the additional release of heat into the atmosphere increases. This process also occurs during the heat capacity changes for other reasons. The method for controlling the feed water heat capacity by measuring the value of the refractive index n is developed. The design of a flow-through refractometer based on the total internal reflection for control of the feed water state in the stream is made. The dependence of the heat capacity change of feed water from the refractive index is established. The results of research on different types of water are presented.

Suggested Citation

  • Vadim Davydov & Irena Gureeva & Roman Davydov & Valentin Dudkin, 2022. "Flowing Refractometer for Feed Water State Control in the Second Loop of Nuclear Reactor," Energies, MDPI, vol. 15(2), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:457-:d:721186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang-Heon Lee & Min-Gil Kim & Jeong Ik Lee & Phill-Seung Lee, 2015. "Recent Advances in Ocean Nuclear Power Plants," Energies, MDPI, vol. 8(10), pages 1-23, October.
    2. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    3. Guoyang Wu & Ping Ju & Xinli Song & Chenglong Xie & Wuzhi Zhong, 2016. "Interaction and Coordination among Nuclear Power Plants, Power Grids and Their Protection Systems," Energies, MDPI, vol. 9(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Davydov & Vadim Davydov & Nikita Myazin & Valentin Dudkin, 2022. "The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors," Energies, MDPI, vol. 15(5), pages 1-17, February.
    2. Li Wang & Wentao Sun & Jie Zhao & Dichen Liu, 2019. "A Speed-Governing System Model with Over-Frequency Protection for Nuclear Power Generating Units," Energies, MDPI, vol. 13(1), pages 1-18, December.
    3. Vadim Davydov & Darya Vakorina & Daniil Provodin & Natalya Ryabogina & Gregory Stepanenkov, 2023. "New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures," Energies, MDPI, vol. 16(6), pages 1-16, March.
    4. Çetin, Gürcan & Özkaraca, Osman & Keçebaş, Ali, 2021. "Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Vineet Vajpayee & Elif Top & Victor M. Becerra, 2021. "Analysis of Transient Interactions between a PWR Nuclear Power Plant and a Faulted Electricity Grid," Energies, MDPI, vol. 14(6), pages 1-31, March.
    6. Qiuwen Wang & Yan Zhang & Hu Zhang, 2023. "The Development of Floating Nuclear Power Platforms: Special Marine Environmental Risks, Existing Regulatory Dilemmas, and Potential Solutions," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Shi, Mingxuan & Duan, Zhongdi & Zhao, Xuchong & Wang, Zhiwei & Liu, Shiwen & Xue, Hongxiang, 2024. "Experimental investigation on two-phase flow instability induced by direct contact condensation in open natural circulation," Energy, Elsevier, vol. 292(C).
    8. Shahmoradi-Moghadam, Hani & Schönberger, Jörn, 2021. "Joint optimization of production and routing master planning in mobile supply chains," Operations Research Perspectives, Elsevier, vol. 8(C).
    9. Nikolaos Chalkiadakis & Emmanuel Stamatakis & Melina Varvayanni & Athanasios Stubos & Georgios Tzamalis & Theocharis Tsoutsos, 2023. "A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System," Energies, MDPI, vol. 16(17), pages 1-20, August.
    10. Zedong Zhou & Jinsen Xie & Nianbiao Deng & Pengyu Chen & Zhiqiang Wu & Tao Yu, 2023. "Effect of KLT-40S Fuel Assembly Design on Burnup Characteristics," Energies, MDPI, vol. 16(8), pages 1-14, April.
    11. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.
    12. Gengjin Shi & Zhenlong Wu & Jian Guo & Donghai Li & Yanjun Ding, 2020. "Superheated Steam Temperature Control Based on a Hybrid Active Disturbance Rejection Control," Energies, MDPI, vol. 13(7), pages 1-26, April.
    13. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    14. Pablo Fernández-Arias & Diego Vergara & Álvaro Antón-Sancho, 2023. "Bibliometric Review and Technical Summary of PWR Small Modular Reactors," Energies, MDPI, vol. 16(13), pages 1-15, July.
    15. Qiuwen Wang & Hu Zhang & Puxin Zhu, 2023. "Using Nuclear Energy for Maritime Decarbonization and Related Environmental Challenges: Existing Regulatory Shortcomings and Improvements," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    16. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    17. Carlo L. Vinoya & Aristotle T. Ubando & Alvin B. Culaba & Wei-Hsin Chen, 2023. "State-of-the-Art Review of Small Modular Reactors," Energies, MDPI, vol. 16(7), pages 1-30, April.
    18. Alvaro Rodríguez-Prieto & Mariaenrica Frigione & John Kickhofel & Ana M. Camacho, 2021. "Analysis of the Technological Evolution of Materials Requirements Included in Reactor Pressure Vessel Manufacturing Codes," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    19. Li Wang & Jie Zhao & Dichen Liu & Yi Lin & Yu Zhao & Zhangsui Lin & Ting Zhao & Yong Lei, 2017. "Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems," Energies, MDPI, vol. 10(2), pages 1-22, February.
    20. Vadim Davydov & Bogdan Reznikov & Valentin Dudkin, 2023. "New Optical System for Long Distance Control of Electrical Energy Flows," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:457-:d:721186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.