IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p2993-d1062137.html
   My bibliography  Save this article

Using Nuclear Energy for Maritime Decarbonization and Related Environmental Challenges: Existing Regulatory Shortcomings and Improvements

Author

Listed:
  • Qiuwen Wang

    (School of International Law, East China University of Political Science and Law, Shanghai 201620, China)

  • Hu Zhang

    (School of International Law, East China University of Political Science and Law, Shanghai 201620, China)

  • Puxin Zhu

    (School of International Law, East China University of Political Science and Law, Shanghai 201620, China)

Abstract

In recent years, the use of nuclear energy as propulsion for merchant ships has been proposed as a means of promoting the transition toward maritime decarbonization and environmentally sustainable shipping. However, there are concerns that nuclear-powered merchant ships could pose risks to the marine environment in the event of accidents, such as collisions, machinery failure or damage, fire, or explosions. The current international regulatory framework for nuclear-powered merchant ships is insufficient to address these risks. This research aims to address this gap by conducting a policy analysis of the existing regulations and a critical examination of their effectiveness in addressing the environmental risks of nuclear-powered merchant ships. Through this analysis, the study identifies the shortcomings and insufficiencies in the current framework and explores potential solutions to improve it, with the goal of enhancing the international community’s ability to mitigate the potential impacts of radioactive marine pollution from nuclear-propelled ships in an era of maritime decarbonization.

Suggested Citation

  • Qiuwen Wang & Hu Zhang & Puxin Zhu, 2023. "Using Nuclear Energy for Maritime Decarbonization and Related Environmental Challenges: Existing Regulatory Shortcomings and Improvements," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2993-:d:1062137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/2993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/2993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng Wan & Jihong Chen, 2018. "Human errors are behind most oil-tanker spills," Nature, Nature, vol. 560(7717), pages 161-163, August.
    2. Abram, Tim & Ion, Sue, 2008. "Generation-IV nuclear power: A review of the state of the science," Energy Policy, Elsevier, vol. 36(12), pages 4323-4330, December.
    3. Kindt, John Warren, 1983. "Floating nuclear power plants : US and international regulations," Marine Policy, Elsevier, vol. 7(2), pages 90-100, April.
    4. Kang-Heon Lee & Min-Gil Kim & Jeong Ik Lee & Phill-Seung Lee, 2015. "Recent Advances in Ocean Nuclear Power Plants," Energies, MDPI, vol. 8(10), pages 1-23, October.
    5. Joyeeta Gupta & Susanne Schmeier, 2020. "Future proofing the principle of no significant harm," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(4), pages 731-747, December.
    6. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    7. Zhang, Yang & Sun, Xukai & Chen, Jihong & Cheng, Cheng, 2021. "Spatial patterns and characteristics of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    8. Budnitz, Robert J. & Rogner, H-Holger & Shihab-Eldin, Adnan, 2018. "Expansion of nuclear power technology to new countries – SMRs, safety culture issues, and the need for an improved international safety regime," Energy Policy, Elsevier, vol. 119(C), pages 535-544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Ping Song, 2024. "A Literature Review of Seaport Decarbonisation: Solution Measures and Roadmap to Net Zero," Sustainability, MDPI, vol. 16(4), pages 1-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuwen Wang & Yan Zhang & Hu Zhang, 2023. "The Development of Floating Nuclear Power Platforms: Special Marine Environmental Risks, Existing Regulatory Dilemmas, and Potential Solutions," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    3. Carlo L. Vinoya & Aristotle T. Ubando & Alvin B. Culaba & Wei-Hsin Chen, 2023. "State-of-the-Art Review of Small Modular Reactors," Energies, MDPI, vol. 16(7), pages 1-30, April.
    4. Humphrey, Uguru Edwin & Khandaker, Mayeen Uddin, 2018. "Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 259-275.
    5. Frederik Reitsma & Peter Woods & Martin Fairclough & Yongjin Kim & Harikrishnan Tulsidas & Luis Lopez & Yanhua Zheng & Ahmed Hussein & Gerd Brinkmann & Nils Haneklaus & Anand Rao Kacham & Tumuluri Sre, 2018. "On the Sustainability and Progress of Energy Neutral Mineral Processing," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    6. Joyeeta Gupta & Aarti Gupta & Courtney Vegelin, 2022. "Equity, justice and the SDGs: lessons learnt from two decades of INEA scholarship," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(2), pages 393-409, June.
    7. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    8. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Wróbel, Krzysztof, 2021. "Searching for the origins of the myth: 80% human error impact on maritime safety," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Zhang, Yang & Sun, Xukai & Chen, Jihong & Cheng, Cheng, 2021. "Spatial patterns and characteristics of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    13. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    15. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Rothwell, Geoffrey, 2022. "Projected electricity costs in international nuclear power markets," Energy Policy, Elsevier, vol. 164(C).
    17. Peter H. Sand & Jeffrey McGee, 2022. "Lessons learnt from two decades of international environmental agreements: law," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(2), pages 263-278, June.
    18. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    20. Schröders, Sarah & Allelein, Hans-Josef, 2018. "Energy economic evaluation of process heat supply by solar tower and high temperature reactor based on the ammonia production process," Applied Energy, Elsevier, vol. 212(C), pages 622-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2993-:d:1062137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.