IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9558-d1005701.html
   My bibliography  Save this article

Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia

Author

Listed:
  • Carlo James Cunanan

    (Greener Production Group, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
    Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada)

  • Carlos Andrés Elorza Casas

    (Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada)

  • Mitchell Yorke

    (Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada)

  • Michael Fowler

    (Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada)

  • Xiao-Yu Wu

    (Greener Production Group, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
    Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada)

Abstract

Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage, transmission and distribution, and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day, which will use an 8 MW offshore turbine system off the coast of Nova Scotia, Canada as the main power source. The P2A system consists of a reverse osmosis system, a proton exchange membrane (PEM) electrolyser, a hydrogen storage tank, a nitrogen generator, a set of compressors and heat exchangers, an autothermal Haber-Bosch reactor, and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day, and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios, which is larger than the traditional fossil-fuel based ammonia production, when using the grid in provinces like Nova Scotia, even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne −1 for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system, reducing the reliance on the electricity grid, increasing service life, and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.

Suggested Citation

  • Carlo James Cunanan & Carlos Andrés Elorza Casas & Mitchell Yorke & Michael Fowler & Xiao-Yu Wu, 2022. "Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9558-:d:1005701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    2. Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
    3. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    4. Chisalita, Dora-Andreea & Petrescu, Letitia & Cormos, Calin-Cristian, 2020. "Environmental evaluation of european ammonia production considering various hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    6. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    2. Andrea J. Boero & Kevin Kardux & Marina Kovaleva & Daniel A. Salas & Jacco Mooijer & Syed Mashruk & Michael Townsend & Kevin Rouwenhorst & Agustin Valera-Medina & Angel D. Ramirez, 2021. "Environmental Life Cycle Assessment of Ammonia-Based Electricity," Energies, MDPI, vol. 14(20), pages 1-20, October.
    3. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    4. Kanaan, Riham & Affonso Nóbrega, Pedro Henrique & Achard, Patrick & Beauger, Christian, 2023. "Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    6. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    7. Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
    8. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    9. Sillman, Jani & Havukainen, Jouni & Alfasfos, Rami & Elyasi, Nashmin & Lilja, Miro & Ruuskanen, Vesa & Laasonen, Emma & Leppäkoski, Lauri & Uusitalo, Ville & Soukka, Risto, 2024. "Meta-analysis of climate impact reduction potential of hydrogen usage in 9 Power-to-X pathways," Applied Energy, Elsevier, vol. 359(C).
    10. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    11. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    12. Ives, Matthew & Cesaro, Zac & Bramstoft, Rasmus & Bañares-Alcántara, René, 2023. "Facilitating deep decarbonization via sector coupling of green hydrogen and ammonia," INET Oxford Working Papers 2023-04, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    13. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    14. Johannes Karlsson & Anders Grauers, 2023. "Agent-Based Investigation of Charger Queues and Utilization of Public Chargers for Electric Long-Haul Trucks," Energies, MDPI, vol. 16(12), pages 1-25, June.
    15. Akito Ozawa & Yuki Kudoh, 2021. "Assessing Uncertainties of Life-Cycle CO 2 Emissions Using Hydrogen Energy for Power Generation," Energies, MDPI, vol. 14(21), pages 1-23, October.
    16. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    17. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    18. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    19. Haubensak, Lukas & Strahl, Stephan & Braun, Jochen & Faulwasser, Timm, 2024. "Towards real-time capable optimal control for fuel cell vehicles using hierarchical economic MPC," Applied Energy, Elsevier, vol. 366(C).
    20. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9558-:d:1005701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.