IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9555-d1005789.html
   My bibliography  Save this article

Algorithm for Monitoring Emissions Based on Actual Speed of Ships Participating in the Korean Vessel Speed Reduction Program

Author

Listed:
  • Jae-Ung Lee

    (Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea)

  • Won-Ju Lee

    (Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
    Interdisciplinary Major of Maritime AI Convergence, Korea Maritime and Ocean University, Busan 49112, Republic of Korea)

  • Eun-Seok Jeong

    (Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea)

  • Jung-Ho Noh

    (Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea)

  • Jong-Sung Kim

    (Division of Navigation Convergence Studies, Korea Maritime and Ocean University, Busan 49112, Republic of Korea)

  • Ji-Woong Lee

    (Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea)

Abstract

The vessel speed reduction program (VSRP) was first introduced in the Port of Los Angeles in 2001 to improve air quality. In this study, an algorithm was developed to calculate ship emissions with a bottom-up approach based on ship activity using automatic identification system (AIS) data. The target vessel applied to the emission calculation was a vessel participating in Korea’s VSRP. Factors considered for the calculation of emissions were ship type, speed, gross tonnage, engine power, load, sulfur content of fuel, and fuel consumption rate by engine age. The algorithm is designed to calculate the reduction amount by VSRP by simultaneously calculating the emission amount of the actual speed and the emission amount of the cruise speed when not participating in VSRP. The emission results of ships that participated in the VSRP in 2020 revealed that their speed was reduced by 47% and carbon dioxide emissions by 71.9%. These results were verified through comparison with the fuel consumption report of the container fleet presented by the International Maritime Organization. Our findings can be used to monitor the air pollutant emissions of ships entering major ports in Korea and to develop policies envisaged at reducing the production and effect of greenhouse gases and air pollutants. Moreover, we recommend that this model be replicated in other countries for monitoring ship-induced emissions.

Suggested Citation

  • Jae-Ung Lee & Won-Ju Lee & Eun-Seok Jeong & Jung-Ho Noh & Jong-Sung Kim & Ji-Woong Lee, 2022. "Algorithm for Monitoring Emissions Based on Actual Speed of Ships Participating in the Korean Vessel Speed Reduction Program," Energies, MDPI, vol. 15(24), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9555-:d:1005789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jong-Kyun Woo & Daniel Seong-Hyeok Moon, 2014. "The effects of slow steaming on the environmental performance in liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(2), pages 176-191, March.
    2. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    3. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2020. "Schedule design for liner services under vessel speed reduction incentive programs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 45-62, February.
    4. S. Levent Kuzu & Levent Bilgili & Alper Kiliç, 2021. "Estimation and dispersion analysis of shipping emissions in Bandirma Port, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10288-10308, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michail Serris & Paraskevi Petrou & Isidoros Iakovidis & Sotiria Dimitrellou, 2023. "Techno-Economic and Environmental Evaluation of a Solar Energy System on a Ro-Ro Vessel for Sustainability," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Promoting Liquefied Natural Gas (LNG) Bunkering for Maritime Transportation: Should Ports or Ships Be Subsidized?," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    2. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    3. Peter Andersson & Pernilla Ivehammar, 2017. "Dynamic route planning in the Baltic Sea Region – A cost-benefit analysis based on AIS data," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 631-649, December.
    4. Zheng Wan & Jiawei Ge & Jihong Chen, 2018. "Energy-Saving Potential and an Economic Feasibility Analysis for an Arctic Route between Shanghai and Rotterdam: Case Study from China’s Largest Container Sea Freight Operator," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    5. Zhen, Lu & Zhang, Shuanglu & Zhuge, Dan & Wang, Shuaian & Wang, Yong, 2024. "An emission control policymaking model for sustainable river transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    6. Konur, Olgun & Yuksel, Onur & Aykut Korkmaz, S. & Ozgur Colpan, C. & Saatcioglu, Omur Y. & Koseoglu, Burak, 2023. "Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system," Energy, Elsevier, vol. 262(PA).
    7. Nguyen Khoi Tran & Hans-Dietrich Haasis & Tobias Buer, 2017. "Container shipping route design incorporating the costs of shipping, inland/feeder transport, inventory and CO2 emission," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 667-694, December.
    8. Iftikhar Hussain & Haiyan Wang & Muhammad Safdar & Quoc Bang Ho & Tina D. Wemegah & Saima Noor, 2022. "Estimation of Shipping Emissions in Developing Country: A Case Study of Mohammad Bin Qasim Port, Pakistan," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    9. Finnsgård, Christian & Kalantari, Joakim & Roso, Violeta & Woxenius, Johan, 2020. "The Shipper's perspective on slow steaming - Study of Six Swedish companies," Transport Policy, Elsevier, vol. 86(C), pages 44-49.
    10. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    11. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    12. Hui-Huang Tai & Yun-Hua Chang, 2022. "Reducing pollutant emissions from vessel maneuvering in port areas," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 651-671, September.
    13. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    14. Xiaoqiao Geng & Yuanqiao Wen & Chunhui Zhou & Changshi Xiao, 2017. "Establishment of the Sustainable Ecosystem for the Regional Shipping Industry Based on System Dynamics," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    15. Yi-Hui Liao & Hsuan-Shih Lee, 2023. "Using a Directional Distance Function to Measure the Environmental Efficiency of International Liner Shipping Companies and Assess Regulatory Impact," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    16. Riccardo Giusti & Daniele Manerba & Roberto Tadei, 2021. "Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    17. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    18. Yan Zhou & Haiying Zhou, 2024. "The Emission Reduction Technology Decision of the Port Supply Chain," Mathematics, MDPI, vol. 12(6), pages 1-20, March.
    19. Mansouri, S. Afshin & Lee, Habin & Aluko, Oluwakayode, 2015. "Multi-objective decision support to enhance environmental sustainability in maritime shipping: A review and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 3-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9555-:d:1005789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.