IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9523-d1004512.html
   My bibliography  Save this article

Study on Heat Transfer Characteristics and Performance of the Full Premixed Cauldron Stove with Porous Media

Author

Listed:
  • Dingming Zheng

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 210037, China)

  • Lei Su

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 210037, China)

  • Haoyu Ou

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 210037, China)

  • Shijie Ruan

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 210037, China)

Abstract

The cauldron stoves used in restaurants and canteens usually adopt the combustion mode of blast diffusion. Low combustion efficiency leads to low thermal efficiency and high CO and NOx emissions. To address these problems, a 52 kW fully premixed stove with porous media is designed, and the heat transfer characteristics of the stove are analyzed by theoretical analysis and numerical simulation. The results show that under the rated power, the thermal efficiency of the stove reaches 68.55%, which is more than twice the thermal efficiency of the traditional blast diffusion stove. Among them, the radiant heat efficiency of the stove reaches 47.16%; thus, radiation heat transfer has become an important way of heat transfer of the porous media stove. Moreover, increasing the diameter and emissivity of porous media will increase the radiant thermal efficiency of the stove, but it will significantly reduce the flame temperature. In addition, the influence of the diameter is greater than the emissivity. The increase of the thickness of porous media can significantly improve the preheating temperature of the premixed gas, thus improving the ignition performance of the stove. Additionally, the stove has an appropriate thickness (approximately 3 mm), which not only ensures the preheating temperature but also does not easily allow for breakage and damage of porous media. Increasing the pore density or reducing the porosity of porous media can enhance the ignition performance of the stove. Moreover, the results of numerical simulation verify the theoretical results to a certain extent and shows that there is an optimal flue position as well.

Suggested Citation

  • Dingming Zheng & Lei Su & Haoyu Ou & Shijie Ruan, 2022. "Study on Heat Transfer Characteristics and Performance of the Full Premixed Cauldron Stove with Porous Media," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9523-:d:1004512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keramiotis, Christos & Stelzner, Björn & Trimis, Dimosthenis & Founti, Maria, 2012. "Porous burners for low emission combustion: An experimental investigation," Energy, Elsevier, vol. 45(1), pages 213-219.
    2. Jiale Fu & Tiechen Zhang & Menghan Li & Su Li & Xianglin Zhong & Xiaori Liu, 2019. "Study on Flow and Heat Transfer Characteristics of Porous Media in Engine Particulate Filters Based on Lattice Boltzmann Method," Energies, MDPI, vol. 12(17), pages 1-29, August.
    3. Pantangi, V.K. & Mishra, Subhash C. & Muthukumar, P. & Reddy, Rajesh, 2011. "Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications," Energy, Elsevier, vol. 36(10), pages 6074-6080.
    4. Zilong Deng & Xiangdong Liu & Yongping Huang & Chengbin Zhang & Yongping Chen, 2017. "Heat Conduction in Porous Media Characterized by Fractal Geometry," Energies, MDPI, vol. 10(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav Solnař & Stefan Haase & Tomáš Jirout, 2023. "Application of the Temperature Oscillation Method to Laminar Flow in Straight Horizontal and Curved Minichannels," Energies, MDPI, vol. 16(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    2. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    3. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    4. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    5. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
    6. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.
    7. Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
    8. Wichangarm, Mana & Matthujak, Anirut & Sriveerakul, Thanarath & Sucharitpwatskul, Sedthawatt & Phongthanapanich, Sutthisak, 2020. "Investigation on thermal efficiency of LPG cooking burner using computational fluid dynamics," Energy, Elsevier, vol. 203(C).
    9. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    10. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    11. Lijun Gao & Yunze Li & Huijuan Xu & Xin Zhang & Man Yuan & Xianwen Ning, 2019. "Numerical Investigation on Heat-Transfer and Hydromechanical Performance inside Contaminant-Insensitive Sublimators under a Vacuum Environment for Spacecraft Applications," Energies, MDPI, vol. 12(23), pages 1-21, November.
    12. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    13. Shuhao Zhang & Qian Xu & Shan Su & Shini Peng, 2022. "Influence of Surface Emissivity of Target Environment on Whole Heat Transfer of Porous Ceramics Radiant Burner," Energies, MDPI, vol. 15(18), pages 1-14, September.
    14. Maznoy, Anatoly & Kirdyashkin, Alexander & Pichugin, Nikita & Zambalov, Sergey & Petrov, Dmitry, 2020. "Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications," Energy, Elsevier, vol. 204(C).
    15. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    16. Wang, Guanqing & Tang, Pengbo & Li, Yuan & Xu, Jiangrong & Durst, Franz, 2019. "Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner," Energy, Elsevier, vol. 170(C), pages 1279-1288.
    17. Shi, Junrui & Liu, Yongqi & Mao, Mingming & Lv, Jinsheng & Wang, Youtang & He, Fang, 2019. "Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor," Energy, Elsevier, vol. 181(C), pages 250-263.
    18. Bakry, Ayman I. & Rabea, Karim & El-Fakharany, Magda, 2020. "Starting up implication of the two-region porous inert medium (PIM) burners," Energy, Elsevier, vol. 201(C).
    19. Wang, Shixuan & Li, Linhong & Xia, Yongfang & Fan, Aiwu & Yao, Hong, 2018. "Effect of a catalytic segment on flame stability in a micro combustor with controlled wall temperature profile," Energy, Elsevier, vol. 165(PA), pages 522-531.
    20. Meng Yue & Mao-Zhao Xie & Jun-Rui Shi & Hong-Sheng Liu & Zhong-Shan Chen & Ya-Chao Chang, 2020. "Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane–Air in a Staggered Arrangement Burner with Discrete Cylinders," Energies, MDPI, vol. 13(23), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9523-:d:1004512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.