IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9436-d1002185.html
   My bibliography  Save this article

A Wind Power Probabilistic Model Using the Reflection Method and Multi-Kernel Function Kernel Density Estimation

Author

Listed:
  • Juseung Choi

    (Department of Electrical, Electronic, and Control Engineering, Institute of IT Convergence Technology, Kongju National University, Cheonan 31080, Republic of Korea)

  • Hoyong Eom

    (Department of Electrical, Electronic, and Control Engineering, Institute of IT Convergence Technology, Kongju National University, Cheonan 31080, Republic of Korea)

  • Seung-Mook Baek

    (Department of Electrical, Electronic, and Control Engineering, Institute of IT Convergence Technology, Kongju National University, Cheonan 31080, Republic of Korea)

Abstract

This paper proposes a wind power probabilistic model (WPPM) using the reflection method and multi-kernel function kernel density estimation (KDE). With the increasing penetration of renewable energy sources (RESs) into power systems, several probabilistic approaches have been introduced to assess the impact of RESs on the power system. A probabilistic approach requires a wind power scenario (WPS), and the WPS is generated from the WPPM. Previously, WPPM was generated using a parametric density estimation, and it had limitations in reflecting the characteristics of wind power data (WPD) due to a boundary bias problem. The paper proposes a WPPM generated using the KDE, which is a non-parametric method. Additionally, the paper proposes a reflection method correcting for the boundary bias problem caused by the double-bounded characteristic of the WPD and the multi-kernel function KDE minimizing the effect of tied values. Six bandwidth selectors are used to calculate the bandwidth for the KDE, and one is selected by analyzing the correlation between the normalized WPD and the calculated bandwidth. The results were validated by generating WPPMs with WPDs in six regions of the Republic of Korea, and it was confirmed that the accuracy and goodness-of-fit are improved when the proposed method is used.

Suggested Citation

  • Juseung Choi & Hoyong Eom & Seung-Mook Baek, 2022. "A Wind Power Probabilistic Model Using the Reflection Method and Multi-Kernel Function Kernel Density Estimation," Energies, MDPI, vol. 15(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9436-:d:1002185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. M. Shaheen & Zia Ullah & Mohammed H. Qais & Hany M. Hasanien & Kian J. Chua & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, November.
    2. Dinh Thanh Viet & Vo Van Phuong & Minh Quan Duong & Quoc Tuan Tran, 2020. "Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms," Energies, MDPI, vol. 13(11), pages 1-22, June.
    3. Kim, SunOh & Hur, Jin, 2021. "Probabilistic power output model of wind generating resources for network congestion management," Renewable Energy, Elsevier, vol. 179(C), pages 1719-1726.
    4. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.
    5. Hanifa Teimourian & Mahmoud Abubakar & Melih Yildiz & Amir Teimourian, 2022. "A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution," Energies, MDPI, vol. 15(15), pages 1-15, August.
    6. Kim, Gyeongmin & Hur, Jin, 2021. "Probabilistic modeling of wind energy potential for power grid expansion planning," Energy, Elsevier, vol. 230(C).
    7. Ly Huu Pham & Minh Quan Duong & Van-Duc Phan & Thang Trung Nguyen & Hoang-Nam Nguyen, 2019. "A High-Performance Stochastic Fractal Search Algorithm for Optimal Generation Dispatch Problem," Energies, MDPI, vol. 12(9), pages 1-25, May.
    8. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    9. Muhammad Riaz & Sadiq Ahmad & Irshad Hussain & Muhammad Naeem & Lucian Mihet-Popa, 2022. "Probabilistic Optimization Techniques in Smart Power System," Energies, MDPI, vol. 15(3), pages 1-39, January.
    10. Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
    12. Peizhao Hong & Zhijun Qin, 2022. "Distributed Active Power Optimal Dispatching of Wind Farm Cluster Considering Wind Power Uncertainty," Energies, MDPI, vol. 15(7), pages 1-16, April.
    13. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    14. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    15. Mohammed Alzubaidi & Kazi N. Hasan & Lasantha Meegahapola & Mir Toufikur Rahman, 2021. "Identification of Efficient Sampling Techniques for Probabilistic Voltage Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 14(8), pages 1-15, April.
    16. Kamila Żychaluk & Prakash Patil, 2008. "A cross-validation method for data with ties in kernel density estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 21-44, March.
    17. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    18. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    2. Jaehyun Yoo & Yongju Son & Myungseok Yoon & Sungyun Choi, 2023. "A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors," Sustainability, MDPI, vol. 15(23), pages 1-15, December.
    3. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    4. Ayman Al-Quraan & Bashar Al-Mhairat & Ahmad M. A. Malkawi & Ashraf Radaideh & Hussein M. K. Al-Masri, 2023. "Optimal Prediction of Wind Energy Resources Based on WOA—A Case Study in Jordan," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    5. Iqrar Hussain & Aun Haider & Zahid Ullah & Mario Russo & Giovanni Mercurio Casolino & Babar Azeem, 2023. "Comparative Analysis of Eight Numerical Methods Using Weibull Distribution to Estimate Wind Power Density for Coastal Areas in Pakistan," Energies, MDPI, vol. 16(3), pages 1-18, February.
    6. Lins, Davi Ribeiro & Guedes, Kevin Santos & Pitombeira-Neto, Anselmo Ramalho & Rocha, Paulo Alexandre Costa & de Andrade, Carla Freitas, 2023. "Comparison of the performance of different wind speed distribution models applied to onshore and offshore wind speed data in the Northeast Brazil," Energy, Elsevier, vol. 278(PA).
    7. Józef Ciuła & Sławomir Kowalski & Agnieszka Generowicz & Krzysztof Barbusiński & Zbigniew Matuszak & Krzysztof Gaska, 2023. "Analysis of Energy Generation Efficiency and Reliability of a Cogeneration Unit Powered by Biogas," Energies, MDPI, vol. 16(5), pages 1-16, February.
    8. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    9. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    11. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    12. Periklis Gogas & Theophilos Papadimitriou, 2023. "Machine Learning in Renewable Energy," Energies, MDPI, vol. 16(5), pages 1-3, February.
    13. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    14. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    15. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Rodriguez-Hernandez, O. & Jaramillo, O.A. & Andaverde, J.A. & del Río, J.A., 2013. "Analysis about sampling, uncertainties and selection of a reliable probabilistic model of wind speed data used on resource assessment," Renewable Energy, Elsevier, vol. 50(C), pages 244-252.
    17. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    18. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    19. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    20. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9436-:d:1002185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.