IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5684-d880900.html
   My bibliography  Save this article

A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution

Author

Listed:
  • Hanifa Teimourian

    (Department of Electrical Engineering, Faculty of Engineering, University of Near East, Northern Cyprus, Via Mersin 10, Lefkosa 99138, Turkey)

  • Mahmoud Abubakar

    (Department of Aeronautical Engineering, Faculty of Aviation and Space Sciences, University of Kyrenia, Northern Cyprus, Via Mersin 10, Girne 99320, Turkey)

  • Melih Yildiz

    (Department of Aeronautical Engineering, Faculty of Aviation and Space Sciences, Erciyes University, Kayseri 38280, Turkey)

  • Amir Teimourian

    (Department of Aeronautical Engineering, Faculty of Aviation and Space Sciences, University of Kyrenia, Northern Cyprus, Via Mersin 10, Girne 99320, Turkey)

Abstract

Wind power generation highly depends on the determination of wind power potential, which drives the design and feasibility of the wind energy production investment. This gives an important role to wind power estimation, which creates the need for an accurate wind data analysis and wind energy potential assessments for a given location. Such assessments require the implementation of an accurate and suitable wind distribution model. Therefore, in the quest for a well-fitted model, eight methods for estimating the Weibull parameters are investigated in this paper. The methods were then investigated by employing statistical tools, and their performances have been discussed in terms of various error indicators such as root mean squared error (RMSE), regression error (R2), chi-square (X2), and mean absolute error (MAE). Meteorological data for diverse terrain from 14 provinces with 30 sites scattered across Iran were employed to examine the performance of the investigated methods. The results demonstrated that the empirical method has superiority over the investigated technique in terms of errors.

Suggested Citation

  • Hanifa Teimourian & Mahmoud Abubakar & Melih Yildiz & Amir Teimourian, 2022. "A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution," Energies, MDPI, vol. 15(15), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5684-:d:880900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    2. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    3. Ucar, Aynur & Balo, Figen, 2010. "Assessment of wind power potential for turbine installation in coastal areas of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1901-1912, September.
    4. Ouammi, Ahmed & Dagdougui, Hanane & Sacile, Roberto & Mimet, Abdelaziz, 2010. "Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1959-1968, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iqrar Hussain & Aun Haider & Zahid Ullah & Mario Russo & Giovanni Mercurio Casolino & Babar Azeem, 2023. "Comparative Analysis of Eight Numerical Methods Using Weibull Distribution to Estimate Wind Power Density for Coastal Areas in Pakistan," Energies, MDPI, vol. 16(3), pages 1-18, February.
    2. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.
    3. Józef Ciuła & Sławomir Kowalski & Agnieszka Generowicz & Krzysztof Barbusiński & Zbigniew Matuszak & Krzysztof Gaska, 2023. "Analysis of Energy Generation Efficiency and Reliability of a Cogeneration Unit Powered by Biogas," Energies, MDPI, vol. 16(5), pages 1-16, February.
    4. Hadi Fazeli & Mohammad Sadegh Allahyari & Saeid Firouzi & Tarek Ben Hassen & Jhalukpreya Surujlal & Nima Nejadrezaei & Mina Sadeghzadeh, 2023. "Knowledge, Attitude, and Perception of Students Regarding Renewable Energies in Agriculture in Guilan, Iran," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    5. Juseung Choi & Hoyong Eom & Seung-Mook Baek, 2022. "A Wind Power Probabilistic Model Using the Reflection Method and Multi-Kernel Function Kernel Density Estimation," Energies, MDPI, vol. 15(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    2. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    3. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    4. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    5. Mónica Borunda & Katya Rodríguez-Vázquez & Raul Garduno-Ramirez & Javier de la Cruz-Soto & Javier Antunez-Estrada & Oscar A. Jaramillo, 2020. "Long-Term Estimation of Wind Power by Probabilistic Forecast Using Genetic Programming," Energies, MDPI, vol. 13(8), pages 1-24, April.
    6. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    7. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    8. Mohammadi, Kasra & Shamshirband, Shahaboddin & Yee, Por Lip & Petković, Dalibor & Zamani, Mazdak & Ch, Sudheer, 2015. "Predicting the wind power density based upon extreme learning machine," Energy, Elsevier, vol. 86(C), pages 232-239.
    9. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    10. Aliashim Albani & Mohd Zamri Ibrahim & Kim Hwang Yong, 2018. "Influence of the ENSO and Monsoonal Season on Long-Term Wind Energy Potential in Malaysia," Energies, MDPI, vol. 11(11), pages 1-18, November.
    11. Ohunakin, Olayinka S., 2011. "Wind resources in North-East geopolitical zone, Nigeria: An assessment of the monthly and seasonal characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1977-1987, May.
    12. Aris Alexopoulos, 2019. "One-Parameter Weibull-Type Distribution, Its Relative Entropy with Respect to Weibull and a Fractional Two-Parameter Exponential Distribution," Stats, MDPI, vol. 2(1), pages 1-21, January.
    13. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    14. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    15. Santiago Pindado & Carlos Pindado & Javier Cubas, 2017. "Fréchet Distribution Applied to Salary Incomes in Spain from 1999 to 2014. An Engineering Approach to Changes in Salaries’ Distribution," Economies, MDPI, vol. 5(2), pages 1-19, May.
    16. Junjie Lu & Jinquan Huang & Feng Lu, 2017. "Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle," Energies, MDPI, vol. 10(1), pages 1-15, January.
    17. Khandaker Dahirul Islam & Thanansak Theppaya & Fida Ali & Jompob Waewsak & Tanita Suepa & Juntakan Taweekun & Teerawet Titseesang & Kuaanan Techato, 2021. "Wind Energy Analysis in the Coastal Region of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-18, September.
    18. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    19. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    20. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5684-:d:880900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.