IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9433-d1002079.html
   My bibliography  Save this article

Very Short-Term Forecast: Different Classification Methods of the Whole Sky Camera Images for Sudden PV Power Variations Detection

Author

Listed:
  • Alessandro Niccolai

    (Department of Energy, Politecnico di Milano, Via Giuseppe La Masa, 34, 20156 Milan, Italy)

  • Emanuele Ogliari

    (Department of Energy, Politecnico di Milano, Via Giuseppe La Masa, 34, 20156 Milan, Italy)

  • Alfredo Nespoli

    (Department of Energy, Politecnico di Milano, Via Giuseppe La Masa, 34, 20156 Milan, Italy)

  • Riccardo Zich

    (Department of Energy, Politecnico di Milano, Via Giuseppe La Masa, 34, 20156 Milan, Italy)

  • Valentina Vanetti

    (Department of Energy, Politecnico di Milano, Via Giuseppe La Masa, 34, 20156 Milan, Italy)

Abstract

Solar radiation is by nature intermittent and influenced by many factors such as latitude, season and atmospheric conditions. As a consequence, the growing penetration of Photovoltaic (PV) systems into the electricity network implies significant problems of stability, reliability and scheduling of power grid operation. Concerning the very short-term PV power production, the power fluctuations are primarily related to the interaction between solar irradiance and cloud cover. In small-scale systems such as microgrids, the adoption of a forecasting tool is a brilliant solution to minimize PV power curtailment and limit the installed energy storage capacity. In the present work, two different nowcasting methods are applied to classify the solar attenuation due to clouds presence on five different forecast horizons, from 1 to 5 min: a Pattern Recognition Neural Network and a Random Forest model. The proposed methods are tested and compared on a real case study: available data consists of historical irradiance measurements and infrared sky images collected in a real PV facility, the SolarTech LAB in Politecnico di Milano. The classification output is a range of values corresponding to the future value assumed by the Clear Sky Index (CSI), an indicator allowing to account for irradiance variations only related to clouds passage, neglecting diurnal and seasonal influences. The developed models present similar performance in all the considered time horizons, reliably detecting the CSI drops caused by incoming overcast and partially cloudy sky conditions.

Suggested Citation

  • Alessandro Niccolai & Emanuele Ogliari & Alfredo Nespoli & Riccardo Zich & Valentina Vanetti, 2022. "Very Short-Term Forecast: Different Classification Methods of the Whole Sky Camera Images for Sudden PV Power Variations Detection," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9433-:d:1002079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Nespoli, Alfredo & Niccolai, Alessandro & Ogliari, Emanuele & Perego, Giovanni & Collino, Elena & Ronzio, Dario, 2022. "Machine Learning techniques for solar irradiation nowcasting: Cloud type classification forecast through satellite data and imagery," Applied Energy, Elsevier, vol. 305(C).
    3. Wang, Fei & Lu, Xiaoxing & Mei, Shengwei & Su, Ying & Zhen, Zhao & Zou, Zubing & Zhang, Xuemin & Yin, Rui & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant," Energy, Elsevier, vol. 238(PC).
    4. Keda Pan & Changhong Xie & Chun Sing Lai & Dongxiao Wang & Loi Lei Lai, 2020. "Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems," Forecasting, MDPI, vol. 2(4), pages 1-18, November.
    5. Alessandro Niccolai & Alfredo Nespoli, 2020. "Sun Position Identification in Sky Images for Nowcasting Application," Forecasting, MDPI, vol. 2(4), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    2. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    3. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
    4. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
    5. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    6. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    7. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    8. Sonia Leva, 2021. "Editorial for Special Issue: “Feature Papers of Forecasting”," Forecasting, MDPI, vol. 3(1), pages 1-3, February.
    9. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    11. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    12. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    13. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    14. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    15. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    16. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    17. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    18. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    19. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    20. Alen Jakoplić & Dubravko Franković & Juraj Havelka & Hrvoje Bulat, 2023. "Short-Term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning," Energies, MDPI, vol. 16(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9433-:d:1002079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.