IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6296209.html
   My bibliography  Save this article

Evolutionary Dendritic Neural Model for Classification Problems

Author

Listed:
  • Xiaoxiao Qian
  • Cheng Tang
  • Yuki Todo
  • Qiuzhen Lin
  • Junkai Ji

Abstract

In this paper, an evolutionary dendritic neuron model (EDNM) is proposed to solve classification problems. It utilizes synapses and dendritic branches to implement the nonlinear computation. Distinct from the classical dendritic neuron model (CDNM) trained by the backpropagation (BP) algorithm, the proposed EDNM is trained by a metaheuristic cuckoo search (CS) algorithm instead, which has been regarded as a global searching algorithm. CS algorithm enables EDNM to avoid several disadvantages, such as slow convergence, trapping into local minimum, and being sensitive to initial values. To evaluate the performance of EDNM, we compare it with a multilayer perceptron (MLP) and CDNM on two benchmark classification problems. The experimental results demonstrate that EDNM is superior to MLP and CDNM in terms of accuracy rate, receiver operator characteristic curve (ROC), and convergence speed. In addition, the neural structure of EDNM can be replaced by a logical circuit completely, which can be implemented in hardware easily. The corresponding experimental results also verify the effectiveness of the logical circuit classifier.

Suggested Citation

  • Xiaoxiao Qian & Cheng Tang & Yuki Todo & Qiuzhen Lin & Junkai Ji, 2020. "Evolutionary Dendritic Neural Model for Classification Problems," Complexity, Hindawi, vol. 2020, pages 1-13, August.
  • Handle: RePEc:hin:complx:6296209
    DOI: 10.1155/2020/6296209
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/6296209.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/6296209.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6296209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Mohamed Abd Elaziz & Ahmed H. Samak, 2022. "Wind Power Forecasting Using Optimized Dendritic Neural Model Based on Seagull Optimization Algorithm and Aquila Optimizer," Energies, MDPI, vol. 15(24), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6296209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.