IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp556-572.html
   My bibliography  Save this article

A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China

Author

Listed:
  • Wang, Yun
  • Wang, Jianzhou
  • Wei, Xiang

Abstract

Forecasting wind speed is a crucial issue in the wind power industry, and wind energy is gradually coming to be viewed as one of the most promising alternative energy sources because of its cleanliness and renewability for large-scale commercial production. With the aim of developing accurate tools for forecasting wind speed, this paper presents a novel hybrid intelligent forecasting model based on Least Square Support Vector Machine and the Markov model. Prior to conducting the wind speed forecasting, the original wind speed series is processed using the C–C method, which is a phase space reconstruction method, to automatically determine the input form. Subsequently, the LSSVM (least squares support vector machine) model, which is optimized using the PSOGSA (partical swarm optimization combined with gravitational search algorithm) algorithm, is employed to forecast wind speed. Additionally, the Markov model is developed to make error corrections with the state ranges determined using the FCM (fuzzy C-means) model. The proposed model takes the average forecasting values between the outputs generated by LSSVM and error corrected LSSVM model as the final forecasting results. The simulation results indicate that the proposed model can outperform the other models discussed in this paper with respect to forecasting accuracy and can be a suitable tool for forecasting wind speeds.

Suggested Citation

  • Wang, Yun & Wang, Jianzhou & Wei, Xiang, 2015. "A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China," Energy, Elsevier, vol. 91(C), pages 556-572.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:556-572
    DOI: 10.1016/j.energy.2015.08.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukur, Osamah Basheer & Lee, Muhammad Hisyam, 2015. "Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA," Renewable Energy, Elsevier, vol. 76(C), pages 637-647.
    2. Shi, Jing & Guo, Jinmei & Zheng, Songtao, 2012. "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3471-3480.
    3. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    4. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    5. Liu, Hui & Chen, Chao & Tian, Hong-qi & Li, Yan-fei, 2012. "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks," Renewable Energy, Elsevier, vol. 48(C), pages 545-556.
    6. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    7. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    8. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    9. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    10. Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
    11. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    12. Bouzgou, Hassen & Benoudjit, Nabil, 2011. "Multiple architecture system for wind speed prediction," Applied Energy, Elsevier, vol. 88(7), pages 2463-2471, July.
    13. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    14. Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
    15. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    2. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    3. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    4. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    5. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    6. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    7. Zhang, Chi & Wei, Haikun & Zhao, Junsheng & Liu, Tianhong & Zhu, Tingting & Zhang, Kanjian, 2016. "Short-term wind speed forecasting using empirical mode decomposition and feature selection," Renewable Energy, Elsevier, vol. 96(PA), pages 727-737.
    8. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    9. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    10. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    11. Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.
    12. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    13. Naik, Jyotirmayee & Dash, Sujit & Dash, P.K. & Bisoi, Ranjeeta, 2018. "Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network," Renewable Energy, Elsevier, vol. 118(C), pages 180-212.
    14. Xuejiao Ma & Dandan Liu, 2016. "Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting," Energies, MDPI, vol. 9(8), pages 1-34, August.
    15. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
    16. Li, Chaoshun & Xiao, Zhengguang & Xia, Xin & Zou, Wen & Zhang, Chu, 2018. "A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 131-144.
    17. Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
    18. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    19. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    20. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:556-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.