Investigation of Supercritical Power Plant Boiler Combustion Process Optimization through CFD and Genetic Algorithm Methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tritippayanon, Rattapong & Piemjaiswang, Ratchanon & Piumsomboon, Pornpote & Chalermsinsuwan, Benjapon, 2019. "Computational fluid dynamics of sulfur dioxide and carbon dioxide capture using mixed feeding of calcium carbonate/calcium oxide in an industrial scale circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 250(C), pages 493-502.
- Liu, Xingrang & Bansal, R.C., 2014. "Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant," Applied Energy, Elsevier, vol. 130(C), pages 658-669.
- Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
- Murilo Eduardo Casteroba Bento, 2023. "Wide-Area Measurement-Based Two-Level Control Design to Tolerate Permanent Communication Failures," Energies, MDPI, vol. 16(15), pages 1-15, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qianchao Wang & Hongcan Xu & Lei Pan & Li Sun, 2020. "Active Disturbance Rejection Control of Boiler Forced Draft System: A Data-Driven Practice," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Wu, Yixi & Wang, Ziqi & Shi, Chenli & Jin, Xiaohang & Xu, Zhengguo, 2024. "A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance," Energy, Elsevier, vol. 304(C).
- Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
- Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Yin, Chungen, 2015. "On gas and particle radiation in pulverized fuel combustion furnaces," Applied Energy, Elsevier, vol. 157(C), pages 554-561.
- Hong-Wei Shi & Hai-Peng Wang, 2023. "Research on Full Premixed Combustion and Emission Characteristics of Non-Electric Gas Boiler," Energies, MDPI, vol. 16(21), pages 1-28, November.
- Xu, Wentao & Huang, Yaji & Song, Siheng & Yue, Junfeng & Chen, Bo & Liu, Yuqing & Zou, Yiran, 2023. "A new on-line combustion optimization approach for ultra-supercritical coal-fired boiler to improve boiler efficiency, reduce NOx emission and enhance operating safety," Energy, Elsevier, vol. 282(C).
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
- Xiao, Guolin & Gao, Xiaori & Lu, Wei & Liu, Xiaodong & Asghar, Aamer Bilal & Jiang, Liu & Jing, Wenlin, 2023. "A physically based air proportioning methodology for optimized combustion in gas-fired boilers considering both heat release and NOx emissions," Applied Energy, Elsevier, vol. 350(C).
- Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
- Bartosz Ciupek & Andrzej Frąckowiak, 2024. "Review of Thermal Calculation Methods for Boilers—Perspectives on Thermal Optimization for Improving Ecological Parameters," Energies, MDPI, vol. 17(24), pages 1-15, December.
- Wu, X.D. & Xia, X.H. & Chen, G.Q. & Wu, X.F. & Chen, B., 2016. "Embodied energy analysis for coal-based power generation system-highlighting the role of indirect energy cost," Applied Energy, Elsevier, vol. 184(C), pages 936-950.
- Chang, Hsuan & Hsu, Jian-An & Chang, Cheng-Liang & Ho, Chii-Dong & Cheng, Tung-Wen, 2017. "Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules," Applied Energy, Elsevier, vol. 185(P2), pages 2045-2057.
- Bartosz Ciupek & Łukasz Brodzik & Andrzej Frąckowiak, 2024. "Research on Carbon Footprint Reduction During Hydrogen Co-Combustion in a Turbojet Engine," Energies, MDPI, vol. 17(21), pages 1-16, October.
- Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.
- Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
- Chandrakant Nikam, Keval & Jathar, Laxmikant & Shelare, Sagar Dnyaneshwar & Shahapurkar, Kiran & Dambhare, Sunil & Soudagar, Manzoore Elahi M. & Mubarak, Nabisab Mujawar & Ahamad, Tansir & Kalam, M.A., 2023. "Parametric analysis and optimization of 660 MW supercritical power plant," Energy, Elsevier, vol. 280(C).
- Wang, Zhi & Zhou, Huaichun & Peng, Xianyong & Cao, Shengxian & Tang, Zhenhao & Li, Kuangyu & Fan, Siyuan & Xue, Wenyuan & Yao, Guojia & Xu, Shiming, 2024. "A predictive model with time-varying delays employing channel equalization convolutional neural network for NOx emissions in flexible power generation," Energy, Elsevier, vol. 306(C).
- Wang, Yuelan & Ma, Zengyi & Shen, Yueliang & Tang, Yijun & Ni, Mingjiang & Chi, Yong & Yan, Jianhua & Cen, Kefa, 2016. "A power-saving control strategy for reducing the total pressure applied by the primary air fan of a coal-fired power plant," Applied Energy, Elsevier, vol. 175(C), pages 380-388.
More about this item
Keywords
coal consumption; emission generation; boiler efficiency; computational fluid dynamics; genetic algorithm; excess air;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9076-:d:989339. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.