IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4171-d360509.html
   My bibliography  Save this article

Active Disturbance Rejection Control of Boiler Forced Draft System: A Data-Driven Practice

Author

Listed:
  • Qianchao Wang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Hongcan Xu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Lei Pan

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Li Sun

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

Boiler forced draft systems play a critical role in maintaining power plant safety and efficiency. However, their control is notoriously intractable in terms of modelling difficulty, multiple disturbances and severe noise. To this end, this paper develops a data-driven paradigm by combining some popular data analytics methods in both modelling and control. First, singular value decomposition (SVD) is utilized for data classification, which further cooperates with back propagation (BP) neural network to de-noise the measurements. Second, prediction error method (PEM) is used to analyze the historical data and identify the dynamic model, whose responses agree well with the actual plant data. Third, by estimating the lumped disturbances via the real-time data, active disturbance rejection control (ADRC) is employed to control the forced draft system, whose stability is analyzed in the frequency domain. Simulation results demonstrate the efficiency and superiority of the proposed method over proportional-integral-differential (PID) controller and model predictive controller, depicting a promising prospect in the future industry practice.

Suggested Citation

  • Qianchao Wang & Hongcan Xu & Lei Pan & Li Sun, 2020. "Active Disturbance Rejection Control of Boiler Forced Draft System: A Data-Driven Practice," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4171-:d:360509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Li & Jin, Yuhui & You, Fengqi, 2020. "Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 261(C).
    2. Sun, Li & Li, Guanru & Hua, Q.S. & Jin, Yuhui, 2020. "A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control," Renewable Energy, Elsevier, vol. 147(P1), pages 1642-1652.
    3. Sun, Li & Shen, Jiong & Hua, Qingsong & Lee, Kwang Y., 2018. "Data-driven oxygen excess ratio control for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 231(C), pages 866-875.
    4. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    5. Ren, Feng & Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zhu, Qunyi, 2011. "Combustion and NOx emissions characteristics of a down-fired 660-MWe utility boiler retro-fitted with air-surrounding-fuel concept," Energy, Elsevier, vol. 36(1), pages 70-77.
    6. Liu, Xingrang & Bansal, R.C., 2014. "Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant," Applied Energy, Elsevier, vol. 130(C), pages 658-669.
    7. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Mohammadtaghi Vakili, 2021. "A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons," Energies, MDPI, vol. 14(23), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    3. Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    4. Zhiming Zhang & Hui Ren & Song Hu & Xinfeng Zhang & Tong Zhang & Jiaming Zhou & Shangfeng Jiang & Tao Yu & Bo Deng, 2022. "Arrangement of Belleville Springs on Endplates Combined with Optimal Cross-Sectional Shape in PEMFC Stack Using Equivalent Beam Modeling and FEA," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    5. Gavirineni Naveen Kumar & Edison Gundabattini, 2022. "Investigation of Supercritical Power Plant Boiler Combustion Process Optimization through CFD and Genetic Algorithm Methods," Energies, MDPI, vol. 15(23), pages 1-28, November.
    6. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    7. Sun, Li & Li, Guanru & Hua, Q.S. & Jin, Yuhui, 2020. "A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control," Renewable Energy, Elsevier, vol. 147(P1), pages 1642-1652.
    8. Yuxiao Qin & Guodong Zhao & Qingsong Hua & Li Sun & Soumyadeep Nag, 2019. "Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    9. Zichen Lu & Ying Yan, 2024. "Temperature Control of Fuel Cell Based on PEI-DDPG," Energies, MDPI, vol. 17(7), pages 1-19, April.
    10. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    11. Abel Rubio & Wilton Agila & Leandro González & Jonathan Aviles-Cedeno, 2023. "Distributed Intelligence in Autonomous PEM Fuel Cell Control," Energies, MDPI, vol. 16(12), pages 1-25, June.
    12. Gengjin Shi & Zhenlong Wu & Jian Guo & Donghai Li & Yanjun Ding, 2020. "Superheated Steam Temperature Control Based on a Hybrid Active Disturbance Rejection Control," Energies, MDPI, vol. 13(7), pages 1-26, April.
    13. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    14. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    15. Liu, Chunlong & Li, Zhengqi & Zeng, Lingyan & Zhang, Qinghua & Hu, Richa & Zhang, Xusheng & Guo, Liang & Huang, Yong & Yang, Xianwei & Chen, Liheng, 2016. "Gas/particle two-phase flow characteristics of a down-fired 350 MWe supercritical utility boiler at different tertiary air ratios," Energy, Elsevier, vol. 102(C), pages 54-64.
    16. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    17. Fan Zhang & Yali Xue & Donghai Li & Zhenlong Wu & Ting He, 2019. "On the Flexible Operation of Supercritical Circulating Fluidized Bed: Burning Carbon Based Decentralized Active Disturbance Rejection Control," Energies, MDPI, vol. 12(6), pages 1-18, March.
    18. Zhu, Zheng & Chen, Sian & Kong, Xiaobing & Ma, Lele & Liu, Xiangjie & Lee, Kwang Y., 2024. "A centralized EMPC scheme for PV-powered alkaline electrolyzer," Renewable Energy, Elsevier, vol. 229(C).
    19. Song, Dafeng & Wu, Qingtao & Zeng, Xiaohua & Zhang, Xuanming & Qian, Qifeng & Yang, DongPo, 2024. "Feedback-linearization decoupling based coordinated control of air supply and thermal management for vehicular fuel cell system," Energy, Elsevier, vol. 305(C).
    20. Wu, Yixi & Wang, Ziqi & Shi, Chenli & Jin, Xiaohang & Xu, Zhengguo, 2024. "A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4171-:d:360509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.