IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8976-d985986.html
   My bibliography  Save this article

Advanced Coal, Petroleum, and Natural Gas Exploration Technology

Author

Listed:
  • Gan Feng

    (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)

  • Hongqiang Xie

    (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)

  • Qingxiang Meng

    (Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China)

  • Fei Wu

    (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China)

  • Gan Li

    (Department of Civil Engineering, Ningbo University, Ningbo 315211, China)

Abstract

Oil, coal, and natural gas are traditional fossil energy sources and the main components of primary energy consumption globally [...]

Suggested Citation

  • Gan Feng & Hongqiang Xie & Qingxiang Meng & Fei Wu & Gan Li, 2022. "Advanced Coal, Petroleum, and Natural Gas Exploration Technology," Energies, MDPI, vol. 15(23), pages 1-5, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8976-:d:985986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    2. Chen, Bingbing & Liu, Zheyuan & Sun, Huiru & Zhao, Guojun & Sun, Xiang & Yang, Mingjun, 2021. "The synthetic effect of traditional-thermodynamic-factors (temperature, salinity, pressure) and fluid flow on natural gas hydrate recovery behaviors," Energy, Elsevier, vol. 233(C).
    3. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Shen, Shi & Wu, Zhaoran & Wu, Dejun & Li, Yanghui, 2024. "Strength and creep characteristics of methane hydrate-bearing clayey silts of the South China Sea," Energy, Elsevier, vol. 294(C).
    2. Wei, Rupeng & Xia, Yongqiang & Qu, Aoxing & Fan, Qi & Li, Qingping & Lv, Xin & Leng, Shudong & Li, Xingbo & Zhang, Lunxiang & Zhang, Yi & Zhao, Jiafei & Yang, Lei & Sun, Xiang & Song, Yongchen, 2024. "Sustained production of gas hydrate through hybrid depressurization scheme with enhanced energy efficiency and mitigated ice blockage," Energy, Elsevier, vol. 289(C).
    3. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    4. Jianfa Wu & Yintong Guo & Haoyong Huang & Guokai Zhao & Qiyong Gou & Junchuan Gui & Ersi Xu, 2023. "Effect of Hydration under High Temperature and Pressure on the Stress Thresholds of Shale," Energies, MDPI, vol. 16(23), pages 1-13, November.
    5. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    6. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    7. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    8. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    9. You, Zeshao & Li, Yanghui & Yang, Meixiao & Wu, Peng & Liu, Tao & Li, Jiayu & Hu, Wenkang & Song, Yongchen, 2024. "Investigation of particle-scale mechanical behavior of hydrate-bearing sands using DEM: Focus on hydrate habits," Energy, Elsevier, vol. 289(C).
    10. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    11. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    12. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    13. Liu, Kouqi & Jin, Zhijun & Zeng, Lianbo & Ozotta, Ogochukwu & Gentzis, Thomas & Ostadhassan, Mehdi, 2023. "Alteration in the mechanical properties of the Bakken during exposure to supercritical CO2," Energy, Elsevier, vol. 262(PB).
    14. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    15. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    16. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    17. Shaoqi Kong & Gan Feng & Yueliang Liu & Chuang Wen, 2023. "Energy Extraction and Processing Science," Energies, MDPI, vol. 16(14), pages 1-5, July.
    18. Jun Liu & Gan Feng & Peng Zhao, 2023. "Application and Optimization of CCUS Technology in Shale Gas Production and Storage," Energies, MDPI, vol. 16(14), pages 1-3, July.
    19. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    20. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8976-:d:985986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.