IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8821-d981277.html
   My bibliography  Save this article

Pyrolytic Depolymerization Mechanisms for Post-Consumer Plastic Wastes

Author

Listed:
  • Kirtika Kohli

    (Aromatic Separation Area, Separation Process Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand, India
    Prairie Research Institute−Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, Champaign, IL 61820, USA)

  • Sriraam R. Chandrasekaran

    (Prairie Research Institute−Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, Champaign, IL 61820, USA)

  • Ravindra Prajapati

    (Prairie Research Institute−Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, Champaign, IL 61820, USA)

  • Bidhya Kunwar

    (Prairie Research Institute−Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, Champaign, IL 61820, USA)

  • Sultan Al-Salem

    (Environment & Life Science Research Center, Kuwait Institute for Scientific Research (KISR), Safat 13109, Kuwait)

  • Bryan R. Moser

    (Bio-Oils Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St., Peoria, IL 61604, USA)

  • Brajendra K. Sharma

    (Prairie Research Institute−Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, Champaign, IL 61820, USA
    Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA)

Abstract

Fast pyrolysis of five post-consumer plastic waste materials was studied using pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) technique. Prescription medicine bottles, landfill liners, and one type of industrial plastic waste represented polyolefin-based polymers, whereas packaging material represented polystyrene, and other industrial plastic waste represented polyurethane. The noncatalytic and catalytic degradation mechanisms of all five post-consumer plastic wastes were elucidated. The noncatalytic pyrolysis experiments were conducted at a temperature of 600 °C for a residence time of 5 min. For catalytic pyrolysis, a spent FCC catalyst was utilized for polystyrene, a sulfated zirconia-based catalyst was utilized for polyurethane, and a Y-zeolite catalyst was used for polyolefinic plastic waste. The results suggested that the thermal reaction has higher monomeric and oligomeric selectivity than the catalytic reaction. Results from the catalytic runs showed that the addition of catalysts greatly influences product compositions and has a significant effect on the selectivity of a specific compound. One of the plastic wastes, landfill liner, was selected for a batch scale pyrolysis at 420–440 °C using Y-zeolite as a catalyst to demonstrate the product properties and potential use of the liquid product formed. The complete product distribution of plastic crude oil was performed followed by distillation to produce aviation range fuel. The fuel properties of aviation range fuel were examined, and results suggested that the fuel fraction can be easily blended with commercially available fuels for direct applications.

Suggested Citation

  • Kirtika Kohli & Sriraam R. Chandrasekaran & Ravindra Prajapati & Bidhya Kunwar & Sultan Al-Salem & Bryan R. Moser & Brajendra K. Sharma, 2022. "Pyrolytic Depolymerization Mechanisms for Post-Consumer Plastic Wastes," Energies, MDPI, vol. 15(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8821-:d:981277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Hoornweg & Perinaz Bhada-Tata & Chris Kennedy, 2013. "Environment: Waste production must peak this century," Nature, Nature, vol. 502(7473), pages 615-617, October.
    2. Kunwar, Bidhya & Moser, Bryan R. & Chandrasekaran, Sriraam R. & Rajagopalan, Nandakishore & Sharma, Brajendra K., 2016. "Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic," Energy, Elsevier, vol. 111(C), pages 884-892.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro De Matteis & Fethiye Burcu Turkmen Ceylan & Mona Daoud & Anne Kahuthu, 2022. "A systemic approach to tackling ocean plastic debris," Environment Systems and Decisions, Springer, vol. 42(1), pages 136-145, March.
    2. Imran Khan & Furrukh Bashir & Rashid Ahmad & Muhammad Ayub, 2021. "Shopping Motivation and Green Consumption: A Study about Green Buying Behavior of Pakistani Consumers," iRASD Journal of Management, International Research Alliance for Sustainable Development (iRASD), vol. 3(3), pages 233-242, December.
    3. Cordier, Mateo & Uehara, Takuro & Baztan, Juan & Jorgensen, Bethany & Yan, Huijie, 2021. "Plastic pollution and economic growth: The influence of corruption and lack of education," Ecological Economics, Elsevier, vol. 182(C).
    4. Brogaard, Line K. & Damgaard, Anders & Jensen, Morten B. & Barlaz, Morton & Christensen, Thomas H., 2014. "Evaluation of life cycle inventory data for recycling systems," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 30-45.
    5. Bente Foereid & Julia Szocs, 2022. "Does Loading Ammonium to Sorbents Affect Plant Availability in Soil?," Agriculture, MDPI, vol. 12(7), pages 1-11, July.
    6. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    7. Vanessa Burg & Gillianne Bowman & Stefanie Hellweg & Oliver Thees, 2019. "Long-Term Wet Bioenergy Resources in Switzerland: Drivers and Projections until 2050," Energies, MDPI, vol. 12(18), pages 1-21, September.
    8. Yan Ma & Susu Cheng, 2023. "Channel coordination in a closed‐loop supply chain with fairness concerns under further extended producer responsibility," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 876-891, March.
    9. Carmen Avilés-Palacios & Ana Rodríguez-Olalla, 2021. "The Sustainability of Waste Management Models in Circular Economies," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    10. Gian Claudio Faussone & Andrej Kržan & Miha Grilc, 2021. "Conversion of Marine Litter from Venice Lagoon into Marine Fuels via Thermochemical Route: The Overview of Products, Their Yield, Quality and Environmental Impact," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    11. Sai Ge & Jun Ma & Lei Liu & Zhiming Yuan, 2020. "The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing," Sustainability, MDPI, vol. 12(5), pages 1-11, February.
    12. Yan Wang & Lekun Tan & Patricia Garnier & Sabine Houot & Julie Jimenez & Dominique Patureau & Yang Zeng, 2023. "Predicting the Stability of Organic Matter Originating from Different Waste Treatment Procedures," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
    13. Kumar Mangla, Sachin & Börühan, Gülmüş & Ersoy, Pervin & Kazancoglu, Yigit & Song, Malin, 2021. "Impact of information hiding on circular food supply chains in business-to-business context," Journal of Business Research, Elsevier, vol. 135(C), pages 1-18.
    14. Lakhan, Calvin, 2024. "Understanding illegal dumping in Ontario: Drivers, barriers, and policy recommendations," SocArXiv hetz3, Center for Open Science.
    15. Harry Yi-Jui Wu & Ro-Ting Lin & Jung-Der Wang & Yawen Cheng, 2017. "Transnational Dynamics Amid Poor Regulations: Taiwan’s Asbestos Ban Actions and Experiences," IJERPH, MDPI, vol. 14(10), pages 1-10, October.
    16. Zhang, Junting & Qin, Quande & Li, Guangming & Tseng, Chao-Heng & Fang, Guohao, 2023. "Assessing the impact of waste separation on system transition and environmental performance through a city-scale life cycle assessment," Ecological Economics, Elsevier, vol. 211(C).
    17. Friedrich A. Halstenberg & Kai Lindow & Rainer Stark, 2019. "Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering," Sustainability, MDPI, vol. 11(13), pages 1-36, June.
    18. Lorren Kirsty Haywood & Thandi Kapwata & Suzan Oelofse & Gregory Breetzke & Caradee Yael Wright, 2021. "Waste Disposal Practices in Low-Income Settlements of South Africa," IJERPH, MDPI, vol. 18(15), pages 1-12, August.
    19. Hu, Yuanan & Cheng, Hefa & Tao, Shu, 2018. "The growing importance of waste-to-energy (WTE) incineration in China's anthropogenic mercury emissions: Emission inventories and reduction strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 119-137.
    20. Ana I. Casarrubias-Jaimez & Ana Laura Juárez-López & José Luis Rosas-Acevedo & Maximino Reyes-Umaña & América Libertad Rodríguez-Herrera & Fernando Ramos-Quintana, 2021. "Feasibility Analysis of the Sustainability of the Tres Palos Coastal Lagoon: A Multifactorial Approach," Sustainability, MDPI, vol. 13(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8821-:d:981277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.