IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49810-z.html
   My bibliography  Save this article

Barbed arrow-like structure membrane with ultra-high rectification coefficient enables ultra-fast, highly-sensitive lateral-flow assay of cTnI

Author

Listed:
  • Juanhua Li

    (Shenzhen Campus of Sun Yat-sen University
    Sun Yat-sen University)

  • Yiren Liu

    (Shenzhen Campus of Sun Yat-sen University
    Sun Yat-sen University)

  • Tianyu Wu

    (Shenzhen Campus of Sun Yat-sen University
    Sun Yat-sen University)

  • Zihan Xiao

    (Shenzhen Campus of Sun Yat-sen University
    Sun Yat-sen University)

  • Jianhang Du

    (the Eighth Affiliated Hospital of Sun Yat-sen University)

  • Hongrui Liang

    (Shenzhen Campus of Sun Yat-sen University
    Sun Yat-sen University)

  • Cuiping Zhou

    (Southern Medical University)

  • Jianhua Zhou

    (Shenzhen Campus of Sun Yat-sen University
    Sun Yat-sen University)

Abstract

Acute myocardial infarction (AMI) has become a public health disease threatening public life safety due to its high mortality. The lateral-flow assay (LFA) of a typical cardiac biomarker, troponin I (cTnI), is essential for the timely warnings of AMI. However, it is a challenge to achieve an ultra-fast and highly-sensitive assay for cTnI (hs-cTnI) using current LFA, due to the limited performance of chromatographic membranes. Here, we propose a barbed arrow-like structure membrane (BAS Mem), which enables the unidirectional, fast flow and low-residual of liquid. The liquid is rectified through the forces generated by the sidewalls of the barbed arrow-like grooves. The rectification coefficient of liquid flow on BAS Mem is 14.5 (highest to date). Using BAS Mem to replace the conventional chromatographic membrane, we prepare batches of lateral-flow strips and achieve LFA of cTnI within 240 s, with a limit of detection of 1.97 ng mL−1. The lateral-flow strips exhibit a specificity of 100%, a sensitivity of 93.3% in detecting 25 samples of suspected AMI patients. The lateral-flow strips show great performance in providing reliable results for clinical diagnosis, with the potential to provide early warnings for AMI.

Suggested Citation

  • Juanhua Li & Yiren Liu & Tianyu Wu & Zihan Xiao & Jianhang Du & Hongrui Liang & Cuiping Zhou & Jianhua Zhou, 2024. "Barbed arrow-like structure membrane with ultra-high rectification coefficient enables ultra-fast, highly-sensitive lateral-flow assay of cTnI," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49810-z
    DOI: 10.1038/s41467-024-49810-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49810-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49810-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huawei Chen & Pengfei Zhang & Liwen Zhang & Hongliang Liu & Ying Jiang & Deyuan Zhang & Zhiwu Han & Lei Jiang, 2016. "Continuous directional water transport on the peristome surface of Nepenthes alata," Nature, Nature, vol. 532(7597), pages 85-89, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Yalong Kong & Zhigang Liu & Lin Guo & Yu Qiu, 2022. "The Self-Actuating Droplet That Can Turn: A Molecular Dynamics Simulation," Energies, MDPI, vol. 15(22), pages 1-16, November.
    3. Shijie Liu & Chengqi Zhang & Tao Shen & Zidong Zhan & Jia Peng & Cunlong Yu & Lei Jiang & Zhichao Dong, 2023. "Efficient agricultural drip irrigation inspired by fig leaf morphology," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yuanming Zhang & Ningsi Zhang & Yong Liu & Yong Chen & Huiting Huang & Wenjing Wang & Xiaoming Xu & Yang Li & Fengtao Fan & Jinhua Ye & Zhaosheng Li & Zhigang Zou, 2022. "Homogeneous solution assembled Turing structures with near zero strain semi-coherence interface," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49810-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.