IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3603-d1221074.html
   My bibliography  Save this article

Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction

Author

Listed:
  • Yoonjae Noh

    (Department of Management Information Systems, Dong-A University, Busan 49236, Republic of Korea)

  • Jong-Min Kim

    (Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA)

  • Soongoo Hong

    (International School, Duy Tan University, 254 Nguyen Van Linh, Danang 550000, Vietnam
    These authors contributed equally to this work.)

  • Sangjin Kim

    (Department of Management Information Systems, Dong-A University, Busan 49236, Republic of Korea
    These authors contributed equally to this work.)

Abstract

The stock index is actively used for the realization of profits using derivatives and via the hedging of assets; hence, the prediction of the index is important for market participants. As market uncertainty has increased during the COVID-19 pandemic and with the rapid development of data engineering, a situation has arisen wherein extensive amounts of information must be processed at finer time intervals. Addressing the prevalent issues of difficulty in handling multivariate high-frequency time-series data owing to multicollinearity, resource problems in computing hardware, and the gradient vanishing problem due to the layer stacking in recurrent neural network (RNN) series, a novel algorithm is developed in this study. For financial market index prediction with these highly complex data, the algorithm combines ResNet and a variable-wise attention mechanism. To verify the superior performance of the proposed model, RNN, long short-term memory, and ResNet18 models were designed and compared with and without the attention mechanism. As per the results, the proposed model demonstrated a suitable synergistic effect with the time-series data and excellent classification performance, in addition to overcoming the data structure constraints that the other models exhibit. Having successfully presented multivariate high-frequency time-series data analysis, this study enables effective investment decision making based on the market signals.

Suggested Citation

  • Yoonjae Noh & Jong-Min Kim & Soongoo Hong & Sangjin Kim, 2023. "Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3603-:d:1221074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Liam A. Gallagher & Mark P. Taylor, 2002. "Permanent and Temporary Components of Stock Prices: Evidence from Assessing Macroeconomic Shocks," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 345-362, October.
    3. George Y. Jabbour, 1994. "Prediction of future currency exchange rates from current currency futures prices: The case of GM and JY," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(1), pages 25-36, February.
    4. Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
    5. Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
    6. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    9. Hörmann, Siegfried & Horváth, Lajos & Reeder, Ron, 2013. "A Functional Version Of The Arch Model," Econometric Theory, Cambridge University Press, vol. 29(2), pages 267-288, April.
    10. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    11. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    12. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    13. Endri Endri & Zaenal Abidin & Torang P. Simanjuntak & Immas Nurhayati, 2020. "Indonesian Stock Market Volatility: GARCH Model," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 16(2), pages 7-17.
    14. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    15. Susan J. Craln & Jae Ha Lee, 1995. "Intraday volatility in interest rate and foreign exchange spot and futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(4), pages 395-421, June.
    16. Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
    17. Jong†Min Kim & Hojin Jung, 2018. "Time series forecasting using functional partial least square regression with stochastic volatility, GARCH, and exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 269-280, April.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    2. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    3. Semen Son-Turan, 2016. "The Impact of Investor Sentiment on the "Leverage Effect"," International Econometric Review (IER), Econometric Research Association, vol. 8(1), pages 4-18, April.
    4. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    5. Sudi Sudarsanam & Ashraf A. Mahate, 2003. "Glamour Acquirers, Method of Payment and Post‐acquisition Performance: The UK Evidence," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 30(1‐2), pages 299-342, January.
    6. Konstantinos Drakos, 2009. "Cross-Country Stock Market Reactions to Major Terror Events: The Role of Risk Perception," Economics of Security Working Paper Series 16, DIW Berlin, German Institute for Economic Research.
    7. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    8. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    9. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    10. Lu Zhang, 2019. "Q-factors and Investment CAPM," NBER Working Papers 26538, National Bureau of Economic Research, Inc.
    11. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    12. Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
    13. Huerta, Daniel & Egly, Peter V. & Escobari, Diego, 2015. "The Liquidity Crisis, Investor Sentiment, and REIT Returns and Volatility," EconStor Preprints 123499, ZBW - Leibniz Information Centre for Economics.
    14. Samih Antoine Azar, 2013. "The Spurious Relation between Inflation Uncertainty and Stock Returns: Evidence from the U.S," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 99-109, November.
    15. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    16. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).
    17. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    18. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    19. Senarathne, Chamil W & Jayasinghe, Prabhath, 2017. "Information Flow Interpretation of Heteroskedasticity for Capital Asset Pricing: An Expectation-based View of Risk," MPRA Paper 78771, University Library of Munich, Germany, revised 04 Apr 2017.
    20. Robert J Bianchi & Adam E Clements & Michael E Drew, 2009. "HACking at Non-linearity: Evidence from Stocks and Bonds," School of Economics and Finance Discussion Papers and Working Papers Series 244, School of Economics and Finance, Queensland University of Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3603-:d:1221074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.