IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7916-d953013.html
   My bibliography  Save this article

Power Quality Analysis of a Hybrid Microgrid-Based SVM Inverter-Fed Induction Motor Drive with Modulation Index Diversification

Author

Listed:
  • Subramanian Vasantharaj

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632 014, India)

  • Vairavasundaram Indragandhi

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632 014, India)

  • Mohan Bharathidasan

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632 014, India)

  • Belqasem Aljafari

    (Department of Electrical Engineering, Najran University, Najran 11001, Saudi Arabia)

Abstract

The effects of varying modulation indices on the current and voltage harmonics of an induction motor (IM) powered by a three-phase space vector pulse-width modulation (SVM) inverter are presented in this research. The effects were examined using simulation and an experimental setup. IMs can be governed by an SVM inverter drive or a phase-angle control drive for applications that require varying speeds. The analysis of THD content in this study used the modulation index (MI), whose modification affects the harmonic content, and voltage-oriented control (VOC) with SVM in three-phase pulse-width modulation (PWM) inverters with fixed switching frequencies. The control technique relies on two cascaded feedback loops, one controlling the grid current and the other regulating the dc-link voltage to maintain the required level of dc-bus voltage. The control strategy was developed to transform between stationary (α–β) and synchronously rotating (d–q) coordinate systems. To test the viability of the suggested control technique, a 1-hp/3-phase/415-V experimental prototype system built on the DSPACE DS1104 platform was created, and the outcomes were evaluated with sinusoidal pulse-width modulation (SPWM).

Suggested Citation

  • Subramanian Vasantharaj & Vairavasundaram Indragandhi & Mohan Bharathidasan & Belqasem Aljafari, 2022. "Power Quality Analysis of a Hybrid Microgrid-Based SVM Inverter-Fed Induction Motor Drive with Modulation Index Diversification," Energies, MDPI, vol. 15(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7916-:d:953013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Shyi-Min, 2016. "A review of high-efficiency motors: Specification, policy, and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1-12.
    2. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    3. Alsofyani, Ibrahim M. & Idris, N.R.N., 2013. "A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 111-121.
    4. Ali Saadon Al-Ogaili & Ishak Bin Aris & Renuga Verayiah & Agileswari Ramasamy & Marayati Marsadek & Nur Azzammudin Rahmat & Yap Hoon & Ahmed Aljanad & Ahmed N. Al-Masri, 2019. "A Three-Level Universal Electric Vehicle Charger Based on Voltage-Oriented Control and Pulse-Width Modulation," Energies, MDPI, vol. 12(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuefeng Jin & Jiahao Liu & Wei Chen & Tingna Shi, 2023. "Optimized Synchronous Pulse Width Modulation Strategy Based on Discontinuous Carriers," Energies, MDPI, vol. 16(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    2. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    3. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.
    4. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    5. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
    7. Boscariol, Paolo & Richiedei, Dario, 2022. "Energy optimal design of servo-actuated systems: A concurrent approach based on scaling rules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Singh, Gurmeet & Anil Kumar, T.Ch. & Naikan, V.N.A., 2019. "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 193-201.
    9. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Primitivo Díaz & Marco Pérez-Cisneros & Erik Cuevas & Omar Avalos & Jorge Gálvez & Salvador Hinojosa & Daniel Zaldivar, 2018. "An Improved Crow Search Algorithm Applied to Energy Problems," Energies, MDPI, vol. 11(3), pages 1-22, March.
    11. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    12. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    13. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    14. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    15. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    16. Md Junayed Hasan & Jong-Myon Kim, 2019. "Fault Detection of a Spherical Tank Using a Genetic Algorithm-Based Hybrid Feature Pool and k-Nearest Neighbor Algorithm," Energies, MDPI, vol. 12(6), pages 1-14, March.
    17. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    18. Houssein Al Attar & Mohamed Assaad Hamida & Malek Ghanes & Miassa Taleb, 2023. "Review on Modeling and Control Strategies of DC–DC LLC Converters for Bidirectional Electric Vehicle Charger Applications," Energies, MDPI, vol. 16(9), pages 1-28, May.
    19. Ibrahem Hussein & Zakariya Al-Hamouz & M. A. Abido & Abdulaziz Milhem, 2018. "On the Mathematical Modeling of Line-Start Permanent Magnet Synchronous Motors under Static Eccentricity," Energies, MDPI, vol. 11(1), pages 1-17, January.
    20. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7916-:d:953013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.