IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v24y2013icp111-121.html
   My bibliography  Save this article

A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors

Author

Listed:
  • Alsofyani, Ibrahim M.
  • Idris, N.R.N.

Abstract

Variable frequency drives (VFDs) can provide reliable dynamic systems and significant savings in energy usage and costs of the induction motors (IMs). Sensorless controlled IM drives have advantages in terms of efficiency enhancement and energy savings for critical applications such as electric vehicles, high performance machine tools, fans, compressors, etc. IM drives without having speed sensors or optical encoders mounted at the motor shaft are attractive because of their lower cost and higher reliability. When mechanical speed sensor is removed, the rotor speed information is estimated using the measured quantities of stator voltages and currents at the IM terminals. This paper highlights the sensorless techniques applied to the IM drives for sustainable reliability and energy savings. Overview on the IM mathematical model is briefly summarized to establish a physical basis for the sensorless schemes used. Further, the different types of IM-VFDs are presented in the paper. The main focus of this review is on the sensorless estimation techniques which are being applied to make IM-VFDs more effective during wide speed operations including very-high and very-low speed regions.

Suggested Citation

  • Alsofyani, Ibrahim M. & Idris, N.R.N., 2013. "A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 111-121.
  • Handle: RePEc:eee:rensus:v:24:y:2013:i:c:p:111-121
    DOI: 10.1016/j.rser.2013.03.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113002104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.03.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    2. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    3. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    4. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subramanian Vasantharaj & Vairavasundaram Indragandhi & Mohan Bharathidasan & Belqasem Aljafari, 2022. "Power Quality Analysis of a Hybrid Microgrid-Based SVM Inverter-Fed Induction Motor Drive with Modulation Index Diversification," Energies, MDPI, vol. 15(21), pages 1-21, October.
    2. Chuang, Ho-Chiao & Li, Guan-De & Lee, Chen-Ta, 2019. "The efficiency improvement of AC induction motor with constant frequency technology," Energy, Elsevier, vol. 174(C), pages 805-813.
    3. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    4. Sutikno, Tole & Idris, Nik Rumzi Nik & Jidin, Auzani, 2014. "A review of direct torque control of induction motors for sustainable reliability and energy efficient drives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 548-558.
    5. Sulaiman, Erwan & Kosaka, Takashi & Matsui, Nobuyuki, 2014. "Design and analysis of high-power/high-torque density dual excitation switched-flux machine for traction drive in HEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 517-524.
    6. Usha Sengamalai & Geetha Anbazhagan & T. M. Thamizh Thentral & Pradeep Vishnuram & Tahir Khurshaid & Salah Kamel, 2022. "Three Phase Induction Motor Drive: A Systematic Review on Dynamic Modeling, Parameter Estimation, and Control Schemes," Energies, MDPI, vol. 15(21), pages 1-39, November.
    7. Wei Li & Gengyin Li & Kai Ni & Yihua Hu & Xinhua Li, 2017. "A Hybrid Fault-Tolerant Strategy for Severe Sensor Failure Scenarios in Late-Stage Offshore DFIG-WT," Energies, MDPI, vol. 11(1), pages 1-23, December.
    8. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    9. Wei Li & Gengyin Li & Kai Ni & Yihua Hu & Xinhua Li, 2017. "Sensorless Control of Late-Stage Offshore DFIG-WT with FSTP Converters by Using EKF to Ride through Hybrid Faults," Energies, MDPI, vol. 10(12), pages 1-26, November.
    10. El-Kharashi, Eyhab & El-Dessouki, Maher, 2014. "Coupling induction motors to improve the energy conversion process during balanced and unbalanced operation," Energy, Elsevier, vol. 65(C), pages 511-516.
    11. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    12. Neama Yussif & Omar H. Sabry & Ayman S. Abdel-Khalik & Shehab Ahmed & Abdelfatah M. Mohamed, 2020. "Enhanced Quadratic V/f-Based Induction Motor Control of Solar Water Pumping System," Energies, MDPI, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    2. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    3. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    4. Yilmaz, Murat, 2015. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 80-99.
    5. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    6. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.
    7. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    8. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    9. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    10. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    11. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    12. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    13. Islam, Md. Shafiqul & Al-Amin, Abul Quasem & Sarkar, Md. Sujahangir Kabir, 2021. "Energy crisis in Bangladesh: Challenges, progress, and prospects for alternative energy resources," Utilities Policy, Elsevier, vol. 71(C).
    14. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Sooriyaarachchi, Thilanka M. & Tsai, I-Tsung & El Khatib, Sameh & Farid, Amro M. & Mezher, Toufic, 2015. "Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 653-668.
    16. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
    18. Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Zarifi, F. & Mahlia, T.M.I., 2012. "Energy and fuel consumption forecast by retrofitting absorption cooling in Malaysia from 2012 to 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6128-6141.
    19. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    20. Viholainen, Juha & Luoranen, Mika & Väisänen, Sanni & Niskanen, Antti & Horttanainen, Mika & Soukka, Risto, 2016. "Regional level approach for increasing energy efficiency," Applied Energy, Elsevier, vol. 163(C), pages 295-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:24:y:2013:i:c:p:111-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.