IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7818-d949994.html
   My bibliography  Save this article

Biodiesel Synthesis from Milk Thistle ( Silybum marianum (L.) Gaertn.) Seed Oil using ZnO Nanoparticles as a Catalyst

Author

Listed:
  • Hammad Ahmad Jan

    (Department of Botany, University of Buner, Buner 19290, Pakistan)

  • Igor Šurina

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Ahmed S. Al-Fatesh

    (Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Abdulaziz M. Almutlaq

    (Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Sher Wali

    (Department of Botany, Islamia College Peshawar, Peshawar 19002, Pakistan)

  • Anton Lisý

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

Abstract

Biodiesel is considered valuable to reduce dependency on petrofuels. This work aimed to synthesize biodiesel from Silybum marianum using synthesized ZnO nanoparticles as a catalyst. The synthesized ZnO nanoparticles were examined by scanning electron microscopy and X-ray diffraction for confirmation. The synthesized biodiesel was confirmed by ASTM D-6751, H and C-NMR, GC-MS, and FT-IR spectroscopy. The optimum biodiesel yield of 91% was obtained with an oil-to-methanol ratio of 1:24, 15 mg of catalyst concentration, 60 °C temperature, and 45 min of reaction time. Fuel properties were determined according to the ASTM-defined methods and found within the defined limits of ASTM D-6751. 1 H-NMR and 13 C-NMR showed characteristic peaks at 3.667 ppm, 2.000–2.060 ppm, 0.858–0.918 ppm, 5.288–5.407 ppm, 24.93–34.22 ppm, 172.71, 173.12, 130.16 ppm, and 128.14 ppm, respectively, which confirm biodiesel synthesis. The FAMEs composition of biodiesel was determined by GC-MS, which recognized 19 peaks for different types of FAMEs. FT-IR spectroscopy showed two main peaks, first in the range of 1725–1750 cm −1 and second in the range of 1000–1300 cm −1 , which confirmed that the transesterification process had completed successfully. The physicochemical characteristics of Silybum marianum confirm that it is a suitable source to produce biodiesel on an industrial scale.

Suggested Citation

  • Hammad Ahmad Jan & Igor Šurina & Ahmed S. Al-Fatesh & Abdulaziz M. Almutlaq & Sher Wali & Anton Lisý, 2022. "Biodiesel Synthesis from Milk Thistle ( Silybum marianum (L.) Gaertn.) Seed Oil using ZnO Nanoparticles as a Catalyst," Energies, MDPI, vol. 15(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7818-:d:949994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Kifayat & Ahmad, Mushtaq & Sofia, & Qiu, Fengxian, 2015. "Assessing the experimental investigation of milk thistle oil for biodiesel production using base catalyzed transesterification," Energy, Elsevier, vol. 89(C), pages 887-895.
    2. Cardoso, Luana da Costa & Almeida, Fernanda Naiara Campos de & Souza, Gredson Keiff & Asanome, Isabela Yumi & Pereira, Nehemias Curvelo, 2019. "Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production," Renewable Energy, Elsevier, vol. 133(C), pages 743-748.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Hammad Ahmad Jan & Igor Šurina & Akhtar Zaman & Ahmed S. Al-Fatesh & Fazli Rahim & Raja L. Al-Otaibi, 2022. "Synthesis of Biodiesel from Ricinus communis L. Seed Oil, a Promising Non-Edible Feedstock Using Calcium Oxide Nanoparticles as a Catalyst," Energies, MDPI, vol. 15(17), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    2. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    5. Katagi, Kariyappa S. & Munnolli, Ravindra S. & Hosamani, Kallappa M., 2011. "Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production," Applied Energy, Elsevier, vol. 88(5), pages 1797-1802, May.
    6. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    7. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    8. Saddam H. Al-lwayzy & Talal Yusaf, 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines," Energies, MDPI, vol. 6(2), pages 1-18, February.
    9. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    10. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    11. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    12. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    15. Kim, Kyeongsu & Suh, Young-Woong & Ha, Jeong-Myeong & An, Jinjoo & Lee, Ung, 2023. "A comprehensive analysis of biphasic reaction system for economical biodiesel production process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    17. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    18. Muppaneni, Tapaswy & Reddy, Harvind K. & Patil, Prafulla D. & Dailey, Peter & Aday, Curtis & Deng, Shuguang, 2012. "Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent," Applied Energy, Elsevier, vol. 94(C), pages 84-88.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    20. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7818-:d:949994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.