IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021491.html
   My bibliography  Save this article

Risk management framework of peer-to-peer electricity markets

Author

Listed:
  • Seyedhossein, Seyed Saeed
  • Moeini-Aghtaie, Moein

Abstract

Due to the acceleration of energy transition from fossil fuels to Distributed Energy Resources (DERs), the structure of the power industry (mainly generation and distribution) is changing. The emergence of the smart grid concept and Peer-to-Peer (P2P) electricity markets make local producers and consumers face new challenges and risks. Managing the risks that the participants in P2P markets are encountered is necessary to guarantee a sustainable penetration of such markets. This article provides a comprehensive risk analysis by implementing a proposed risk management framework to address the identification, classification, assessment, and mitigation of all risks that prosumers will face when participating in a P2P electricity market. The main risk factors have been investigated in an elaborated way through risk assessment and preliminary suggestions for risk mitigation. Ten risks have been identified and categorized into three main groups. The proper potential responses are addressed for each assessed risk to mitigate the impact of risk associated with participation in the P2P electricity market. Studying the risks from a prosumer's point of view, considering management of those risks in the context of micro-grid scheduling/optimization, and designing the mechanism of the P2P electricity trading market will enhance the acceptance of participating in these markets. Moreover, further research opportunities and directions regarding risk management concepts in P2P electricity markets are discussed.

Suggested Citation

  • Seyedhossein, Seyed Saeed & Moeini-Aghtaie, Moein, 2022. "Risk management framework of peer-to-peer electricity markets," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021491
    DOI: 10.1016/j.energy.2022.125264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thusnelda Tivig & Uwe Walz, 2000. "Market share, cost‐based dumping, and anti‐dumping policy," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 33(1), pages 69-86, February.
    2. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    3. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    4. Sen Guo & Wenyue Zhang & Xiao Gao, 2020. "Business Risk Evaluation of Electricity Retail Company in China Using a Hybrid MCDM Method," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    5. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    6. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    7. Almasalma, Hamada & Claeys, Sander & Deconinck, Geert, 2019. "Peer-to-peer-based integrated grid voltage support function for smart photovoltaic inverters," Applied Energy, Elsevier, vol. 239(C), pages 1037-1048.
    8. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    9. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    10. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    11. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    12. Charwand, Mansour & Gitizadeh, Mohsen & Siano, Pierluigi, 2017. "A new active portfolio risk management for an electricity retailer based on a drawdown risk preference," Energy, Elsevier, vol. 118(C), pages 387-398.
    13. Iria, José & Scott, Paul & Attarha, Ahmad & Gordon, Dan & Franklin, Evan, 2022. "MV-LV network-secure bidding optimisation of an aggregator of prosumers in real-time energy and reserve markets," Energy, Elsevier, vol. 242(C).
    14. Korcaj, Liridon & Hahnel, Ulf J.J. & Spada, Hans, 2015. "Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers," Renewable Energy, Elsevier, vol. 75(C), pages 407-415.
    15. van Leeuwen, Gijs & AlSkaif, Tarek & Gibescu, Madeleine & van Sark, Wilfried, 2020. "An integrated blockchain-based energy management platform with bilateral trading for microgrid communities," Applied Energy, Elsevier, vol. 263(C).
    16. Chen, Kaixuan & Lin, Jin & Song, Yonghua, 2019. "Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model," Applied Energy, Elsevier, vol. 242(C), pages 1121-1133.
    17. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
    18. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    19. Pineda, S. & Conejo, A.J., 2012. "Managing the financial risks of electricity producers using options," Energy Economics, Elsevier, vol. 34(6), pages 2216-2227.
    20. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    21. Bell, Keith & Gill, Simon, 2018. "Delivering a highly distributed electricity system: Technical, regulatory and policy challenges," Energy Policy, Elsevier, vol. 113(C), pages 765-777.
    22. Ecker, Franz & Spada, Hans & Hahnel, Ulf J.J., 2018. "Independence without control: Autarky outperforms autonomy benefits in the adoption of private energy storage systems," Energy Policy, Elsevier, vol. 122(C), pages 214-228.
    23. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    24. B Ritchie & C Brindley, 2007. "An emergent framework for supply chain risk management and performance measurement," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1398-1411, November.
    25. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    26. Good, Nicholas & Martínez Ceseña, Eduardo A. & Heltorp, Christopher & Mancarella, Pierluigi, 2019. "A transactive energy modelling and assessment framework for demand response business cases in smart distributed multi-energy systems," Energy, Elsevier, vol. 184(C), pages 165-179.
    27. Hahnel, Ulf J.J. & Herberz, Mario & Pena-Bello, Alejandro & Parra, David & Brosch, Tobias, 2020. "Becoming prosumer: Revealing trading preferences and decision-making strategies in peer-to-peer energy communities," Energy Policy, Elsevier, vol. 137(C).
    28. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    2. Wang, Longze & Zhang, Yan & Li, Zhehan & Huang, Qiyu & Xiao, Yuxin & Yi, Xinxing & Ma, Yiyi & Li, Meicheng, 2023. "P2P trading mode for real-time coupled electricity and carbon markets based on a new indicator green energy," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    5. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    6. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    7. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    8. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    9. Hahnel, Ulf J.J. & Herberz, Mario & Pena-Bello, Alejandro & Parra, David & Brosch, Tobias, 2020. "Becoming prosumer: Revealing trading preferences and decision-making strategies in peer-to-peer energy communities," Energy Policy, Elsevier, vol. 137(C).
    10. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
    11. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    12. Adewole, Ayooluwa & Shipworth, Michelle & Lemaire, Xavier & Sanderson, Danielle, 2023. "Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households," Energy Policy, Elsevier, vol. 174(C).
    13. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    14. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
    15. Dynge, Marthe Fogstad & Crespo del Granado, Pedro & Hashemipour, Naser & Korpås, Magnus, 2021. "Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations," Applied Energy, Elsevier, vol. 301(C).
    16. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    17. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    18. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    19. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    20. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.