IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7586-d942537.html
   My bibliography  Save this article

Numerical Modelling of Forced Convection of Nanofluids in Smooth, Round Tubes: A Review

Author

Listed:
  • Janusz T. Cieśliński

    (Faculty of Mechanical and Ocean Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdansk, Poland)

Abstract

A comprehensive review of published works dealing with numerical modelling of forced convection heat transfer and hydrodynamics of nanofluids is presented. Due to the extensive literature, the review is limited to straight, smooth, circular tubes, as this is the basic geometry in shell-and-tube exchangers. Works on numerical modelling of forced convection in tubes are presented chronologically in the first part of the article. Particular attention was paid to the method of the solution of governing equations, geometry of the heating section, and boundary conditions assumed. Influence of nanoparticles on heat transfer and flow resistance are discussed. Basic information is summarized in tabular form, separately for single-phase approach and two-phase models. The second part of the article contains the correlation equations proposed in the presented papers for the calculation of the Nusselt (Nu) number or heat transfer coefficient, separately for laminar and turbulent flow. Details of the type of nanofluids, the concentration of nanoparticles, and the Reynolds (Re) number range are also presented. Finally, advantages and disadvantages of individual numerical approaches are discussed.

Suggested Citation

  • Janusz T. Cieśliński, 2022. "Numerical Modelling of Forced Convection of Nanofluids in Smooth, Round Tubes: A Review," Energies, MDPI, vol. 15(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7586-:d:942537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2014. "Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature," Energy, Elsevier, vol. 77(C), pages 403-413.
    2. Mousa, Mohamed H. & Miljkovic, Nenad & Nawaz, Kashif, 2021. "Review of heat transfer enhancement techniques for single phase flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    2. Janusz T. Cieśliński & Dawid Lubocki & Slawomir Smolen, 2022. "Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 15(20), pages 1-22, October.
    3. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    4. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    5. Sayantan Mukherjee & Nawaf F. Aljuwayhel & Sasmita Bal & Purna Chandra Mishra & Naser Ali, 2022. "Modelling, Analysis and Entropy Generation Minimization of Al 2 O 3 -Ethylene Glycol Nanofluid Convective Flow inside a Tube," Energies, MDPI, vol. 15(9), pages 1-24, April.
    6. Xuan Hoang Khoa Le & Ioan Pop & Mikhail A. Sheremet, 2021. "Thermogravitational Convective Flow and Energy Transport in an Electronic Cabinet with a Heat-Generating Element and Solid/Porous Finned Heat Sink," Mathematics, MDPI, vol. 10(1), pages 1-12, December.
    7. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    8. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    9. Gao, Datong & Li, Jing & Ren, Xiao & Hu, Tianxiang & Pei, Gang, 2022. "A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector," Renewable Energy, Elsevier, vol. 197(C), pages 966-977.
    10. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.
    11. Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
    12. Azeez mohammed Hussein, Hind & Zulkifli, Rozli & Faizal Bin Wan Mahmood, Wan Mohd & Ajeel, Raheem K., 2022. "Structure parameters and designs and their impact on performance of different heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Mousa, Mohamed H. & Yang, Cheng-Min & Nawaz, Kashif & Miljkovic, Nenad, 2022. "Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Lee, Seung-Hyun & Choi, Tae Jong & Jang, Seok Pil, 2016. "Thermal efficiency comparison: Surface-based solar receivers with conventional fluids and volumetric solar receivers with nanofluids," Energy, Elsevier, vol. 115(P1), pages 404-417.
    15. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    16. Rashidi, S. & Bovand, M. & Abolfazli Esfahani, J., 2015. "Structural optimization of nanofluid flow around an equilateral triangular obstacle," Energy, Elsevier, vol. 88(C), pages 385-398.
    17. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Iacobazzi, Fabrizio & Milanese, Marco & Colangelo, Gianpiero & Lomascolo, Mauro & de Risi, Arturo, 2016. "An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid," Energy, Elsevier, vol. 116(P1), pages 786-794.
    19. Mohamed Allam & Mohamed Tawfik & Maher Bekheit & Emad El-Negiry, 2022. "Experimental Investigation on Performance Enhancement of Parabolic Trough Concentrator with Helical Rotating Shaft Insert," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    20. Mohammad Ghalambaz & Mohammad Shahabadi & S. A. M Mehryan & Mikhail Sheremet & Obai Younis & Pouyan Talebizadehsardari & Wabiha Yaici, 2021. "Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction," Energies, MDPI, vol. 14(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7586-:d:942537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.