IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7581-d942008.html
   My bibliography  Save this article

Energy Performance of Water Generators from Gaseous Mixtures by Condensation: Climatic Datasets Choice

Author

Listed:
  • Lucia Cattani

    (SEAS SA, Société de l’Eau Aérienne Suisse, Technical Office, Via dell’Industria 13/A, 6826 Riva San Vitale, Switzerland)

  • Anna Magrini

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

  • Valentina Leoni

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy)

Abstract

Due to the growing issues related to water scarcity and pollution, water extraction from gaseous mixtures, such as atmospheric air, or fumes from combustion, is acquiring increasing importance. Nevertheless, one of the main concerns is the energy consumption that affects the use of any kind of Air(/Gas) to Water Generator (AWG). Referring specifically to water extraction from humid environmental air, AWG behaviour depends upon the air thermo-dynamic conditions and thus upon weather data. To evaluate the water extraction energy efficiency, two interesting tools can be applied: the WET (Water Energy Transformation) indicator, concerning the specific AWG machine behaviour, and the MHI (Moisture Harvesting Index), focused on climate suitability evaluation. Those tools require the knowledge of weather data to be applied. When hourly data for the entire year are available, the application of these tools leads to reliable results. However, in many cases, only average climatic data are available. Today, there are no indications about the reliability of results coming from the use of those less accurate data sets: the research aims to provide a preliminary assessment of the conditions under which average climatic data can be employed without losing meaning. This target was pursued by calculating WET and MHI with three different data sets and five meaningful climate examples. By comparing results, it was possible to provide indications about the most suitable use of average data.

Suggested Citation

  • Lucia Cattani & Anna Magrini & Valentina Leoni, 2022. "Energy Performance of Water Generators from Gaseous Mixtures by Condensation: Climatic Datasets Choice," Energies, MDPI, vol. 15(20), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7581-:d:942008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    3. Jackson Lord & Ashley Thomas & Neil Treat & Matthew Forkin & Robert Bain & Pierre Dulac & Cyrus H. Behroozi & Tilek Mamutov & Jillia Fongheiser & Nicole Kobilansky & Shane Washburn & Claudia Truesdell, 2021. "Global potential for harvesting drinking water from air using solar energy," Nature, Nature, vol. 598(7882), pages 611-617, October.
    4. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Air to Water Generator Integrated Systems: The Proposal of a Global Evaluation Index—GEI Formulation and Application Examples," Energies, MDPI, vol. 14(24), pages 1-21, December.
    5. Lucia Cattani & Anna Magrini & Paolo Cattani, 2021. "Water Extraction from Air: A Proposal for a New Indicator to Compare Air Water Generators Efficiency," Energies, MDPI, vol. 14(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia Cattani & Paolo Cattani & Anna Magrini & Roberto Figoni & Daniele Dondi & Dhanalakshmi Vadivel, 2023. "Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Cattani & Paolo Cattani & Anna Magrini & Roberto Figoni & Daniele Dondi & Dhanalakshmi Vadivel, 2023. "Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-20, September.
    2. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.
    3. Helmo K. Morales Paredes & Matheus Branco Arcadepani & Alexandre Candido Moreira & Flávio A. Serrão Gonçalves & Fernando Pinhabel Marafão, 2023. "Enlightening Load Modeling by Means of Power Factor Decompositions," Energies, MDPI, vol. 16(10), pages 1-22, May.
    4. Li, Lei & Huang, Haihong & Zou, Xiang & Zhao, Fu & Li, Guishan & Liu, Zhifeng, 2021. "An energy-efficient service-oriented energy supplying system and control for multi-machine in the production line," Applied Energy, Elsevier, vol. 286(C).
    5. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    6. Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    8. Varun Pratap Singh & Gaurav Dwivedi, 2023. "Technical Analysis of a Large-Scale Solar Updraft Tower Power Plant," Energies, MDPI, vol. 16(1), pages 1-28, January.
    9. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    10. Husam A. Almassad & Rada I. Abaza & Lama Siwwan & Bassem Al-Maythalony & Kyle E. Cordova, 2022. "Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. He Shan & Chunfeng Li & Zhihui Chen & Wenjun Ying & Primož Poredoš & Zhanyu Ye & Quanwen Pan & Jiayun Wang & Ruzhu Wang, 2022. "Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Youhong Guo & Weixin Guan & Chuxin Lei & Hengyi Lu & Wen Shi & Guihua Yu, 2022. "Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Mengbo Zhang & Ranbin Liu & Yaxuan Li, 2022. "Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    14. Jose Ulises Castellanos Contreras & Leonardo Rodríguez Urrego, 2023. "Technological Developments in Control Models Using Petri Nets for Smart Grids: A Review," Energies, MDPI, vol. 16(8), pages 1-21, April.
    15. Yevheniia Varyvoda & Taylor Ann Foerster & Joona Mikkola & Matthew M. Mars, 2024. "Promising Nature-Based Solutions to Support Climate Adaptation of Arizona’s Local Food Entrepreneurs and Optimize One Health," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    16. Ritwick Ghosh & Adrien Baut & Giorgio Belleri & Michael Kappl & Hans-Jürgen Butt & Thomas M. Schutzius, 2023. "Photocatalytically reactive surfaces for simultaneous water harvesting and treatment," Nature Sustainability, Nature, vol. 6(12), pages 1663-1672, December.
    17. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    18. Tong, Kangkang & Sun, Shuyu, 2024. "Multi-dimensional decoupling analysis in the context of energy use: Dynamic well-being, resource, and impact decoupling relationships in China," Applied Energy, Elsevier, vol. 359(C).
    19. Chen, Zhihui & Deng, Fangfang & Yang, Xinge & Shao, Zhao & Du, Shuai & Wang, Ruzhu, 2024. "Highly efficient portable atmospheric water harvester with integrated structure design for high yield water production," Energy, Elsevier, vol. 293(C).
    20. David Macii & Daniele Fontanelli & Grazia Barchi, 2020. "A Distribution System State Estimator Based on an Extended Kalman Filter Enhanced with a Prior Evaluation of Power Injections at Unmonitored Buses," Energies, MDPI, vol. 13(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7581-:d:942008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.