IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7559-d941354.html
   My bibliography  Save this article

A Recent Advance on Partial Evaporating Organic Rankine Cycle: Experimental Results on an Axial Turbine

Author

Listed:
  • Guillaume Lhermet

    (CEA, DES, IRESNE, DER, SESI, LCOS, F-13108 Saint Paul Lez Durance, France
    Université Grenoble Alpes, CEA, LITEN, LCST, F-38054 Grenoble, France)

  • Nicolas Tauveron

    (Université Grenoble Alpes, CEA, LITEN, LCST, F-38054 Grenoble, France)

  • Nadia Caney

    (Université Grenoble Alpes, CEA, LITEN, LCST, F-38054 Grenoble, France)

  • Quentin Blondel

    (Université Grenoble Alpes, CEA, LITEN, LCST, F-38054 Grenoble, France
    GRETh—Groupement pour la Recherche sur les Echangeurs Thermiques, F-73290 La Motte Servolex, France)

  • Franck Morin

    (CEA, DES, IRESNE, DER, SESI, LCOS, F-13108 Saint Paul Lez Durance, France)

Abstract

The organic Rankine cycle (ORC) technology is an efficient way to convert low-grade heat from renewable sources or waste heat for power generation. The partial evaporating organic Rankine cycle (PEORC) can be considered as a promising alternative as it can offer a higher utilization of the heat source. An experimental investigation of a small ORC system used in full or partial evaporation mode is performed. First characterized in superheated mode, which corresponds to standard ORC behavior, a semi-empirical correlative approach involving traditional non-dimensional turbomachinery parameters (specific speed, pressure ratio) can accurately describe one-phase turbine performance. In a second step, two-phase behavior is experimentally investigated. The efficiency loss caused by the two-phase inlet condition is quantified and considered acceptable. The turbine two-phase operation allows for an increase in the amount of recovered heat source. The ability to operate in two phases provides a new degree of flexibility when designing a PEORC. The semi-empirical correlative approach is then completed to take into account the partially evaporated turbine inlet condition. The qualitative description and the quantitative correlations in the one-phase and two-phase modes were applied to different pure working fluids (Novec649 TM , HFE7000 and HFE7100) as well as to a zeotropic mixture (Novec649 TM /HFE7000).

Suggested Citation

  • Guillaume Lhermet & Nicolas Tauveron & Nadia Caney & Quentin Blondel & Franck Morin, 2022. "A Recent Advance on Partial Evaporating Organic Rankine Cycle: Experimental Results on an Axial Turbine," Energies, MDPI, vol. 15(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7559-:d:941354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    2. Scaccabarozzi, Roberto & Tavano, Michele & Invernizzi, Costante Mario & Martelli, Emanuele, 2018. "Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines," Energy, Elsevier, vol. 158(C), pages 396-416.
    3. Tang, Hao & Wu, Huagen & Wang, Xiaolin & Xing, Ziwen, 2015. "Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator," Energy, Elsevier, vol. 90(P1), pages 631-642.
    4. Fischer, Johann, 2011. "Comparison of trilateral cycles and organic Rankine cycles," Energy, Elsevier, vol. 36(10), pages 6208-6219.
    5. Lai, Ngoc Anh & Fischer, Johann, 2012. "Efficiencies of power flash cycles," Energy, Elsevier, vol. 44(1), pages 1017-1027.
    6. Joy, Jubil & Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2022. "Size reduction and enhanced power generation in ORC by vaporizing LNG at high supercritical pressure irrespective of delivery pressure," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Löffler, Michael, 2017. "Batch Processes in Heat Engines," Energy, Elsevier, vol. 125(C), pages 788-794.
    2. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    3. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    4. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.
    5. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    6. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    7. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    8. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    9. Ajimotokan, H.A. & Sher, I., 2015. "Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation," Applied Energy, Elsevier, vol. 154(C), pages 26-34.
    10. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    11. Khouya, Ahmed, 2022. "Performance analysis and optimization of a trilateral organic Rankine powered by a concentrated photovoltaic thermal system," Energy, Elsevier, vol. 247(C).
    12. Xander van Heule & Michel De Paepe & Steven Lecompte, 2022. "Two-Phase Volumetric Expanders: A Review of the State-of-the-Art," Energies, MDPI, vol. 15(14), pages 1-14, July.
    13. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    14. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    15. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    16. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    17. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    18. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    20. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7559-:d:941354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.