IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p973-d1036603.html
   My bibliography  Save this article

Carbon Analysis, Life Cycle Assessment, and Prefabrication: A Case Study of a High-Rise Residential Built-to-Rent Development in the UK

Author

Listed:
  • Dilek Arslan

    (School of Architecture, University of Liverpool, Liverpool L69 7ZN, UK)

  • Steve Sharples

    (School of Architecture, University of Liverpool, Liverpool L69 7ZN, UK)

  • Haniyeh Mohammadpourkarbasi

    (School of Architecture, University of Liverpool, Liverpool L69 7ZN, UK)

  • Raheela Khan-Fitzgerald

    (Hawkins\Brown LLP, London EC1V 4QJ, UK)

Abstract

Recent research relating to energy use and carbon emissions by buildings has started to move from operational energy carbon impacts to the embodied energy/carbon impacts of buildings, and the methods and approaches used in architectural design to reduce embodied carbon have become more prominent. From a practitioner’s perspective, working with an ‘in-house’ Life Cycle Assessment (LCA) tool has become a growing trend for architects, and one perceived way of improving the LCA outcomes of a proposed building is to consider prefabrication of the construction process. Initiatives such as the Low Energy Transformation Initiative (LETI) and government bodies such as Greater London Authorities (GLA) provide guidance on LCA and upfront carbon emission targets for transitioning to net zero by 2050. The aim of this study was to establish (i) the LCA impacts from prefabricated residential buildings against current benchmarks; (ii) boundaries and opportunities in architectural practice in the UK when conducting an LCA; (iii) the effectiveness of an in-house LCA tool. This study shows that, although the life-cycle emissions of this prefabricated building achieved a low band in the LETI labelling system, with 1076 kgCO 2e /m², it still performs better than the business-as-usual model value of 1200 kgCO 2e /m². The results also reveal that the construction industry is not ready to provide realistic data on the prefabrication process to test its advantages compared to conventional constructional methods. However, having an in-house LCA tool provides a faster and more comprehensive LCA due to the commitment to carbon assessment in the office and saves time compared to manual calculations.

Suggested Citation

  • Dilek Arslan & Steve Sharples & Haniyeh Mohammadpourkarbasi & Raheela Khan-Fitzgerald, 2023. "Carbon Analysis, Life Cycle Assessment, and Prefabrication: A Case Study of a High-Rise Residential Built-to-Rent Development in the UK," Energies, MDPI, vol. 16(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:973-:d:1036603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Quale & Matthew J. Eckelman & Kyle W. Williams & Greg Sloditskie & Julie B. Zimmerman, 2012. "Construction Matters: Comparing Environmental Impacts of Building Modular and Conventional Homes in the United States," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 243-253, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pero, Margherita & Stößlein, Martin & Cigolini, Roberto, 2015. "Linking product modularity to supply chain integration in the construction and shipbuilding industries," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 602-615.
    2. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Ravijanya Chippagiri & Ana Bras & Deepak Sharma & Rahul V. Ralegaonkar, 2022. "Technological and Sustainable Perception on the Advancements of Prefabrication in Construction Industry," Energies, MDPI, vol. 15(20), pages 1-19, October.
    4. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Carless, Travis S. & Griffin, W. Michael & Fischbeck, Paul S., 2016. "The environmental competitiveness of small modular reactors: A life cycle study," Energy, Elsevier, vol. 114(C), pages 84-99.
    6. Nicole Anderson & Gayan Wedawatta & Ishara Rathnayake & Niluka Domingo & Zahirah Azizi, 2022. "Embodied Energy Consumption in the Residential Sector: A Case Study of Affordable Housing," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    7. Oriol Pons & Albert De la Fuente & Antonio Aguado, 2016. "The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications," Sustainability, MDPI, vol. 8(5), pages 1-15, May.
    8. Alejandro Enfedaque & Marcos G. Alberti & Jaime C. Gálvez & Marino Rivera & José M. Simón-Talero, 2018. "Can Polyolefin Fibre Reinforced Concrete Improve the Sustainability of a Flyover Bridge?," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    9. Fred Edmond Boafo & Jin-Hee Kim & Jun-Tae Kim, 2016. "Performance of Modular Prefabricated Architecture: Case Study-Based Review and Future Pathways," Sustainability, MDPI, vol. 8(6), pages 1-16, June.
    10. Kamali, Mohammad & Hewage, Kasun, 2016. "Life cycle performance of modular buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1171-1183.
    11. Joosung Lee & Jaejun Kim, 2017. "BIM-Based 4D Simulation to Improve Module Manufacturing Productivity for Sustainable Building Projects," Sustainability, MDPI, vol. 9(3), pages 1-23, March.
    12. Joaquin Humberto Aquino Rocha & Andréia Arenari de Siqueira & Marco Antonio Barbosa de Oliveira & Lucas da Silva Castro & Lucas Rosse Caldas & Nathalie Barbosa Reis Monteiro & Romildo Dias Toledo Filh, 2022. "Circular Bioeconomy in the Amazon Rainforest: Evaluation of Açaí Seed Ash as a Regional Solution for Partial Cement Replacement," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    13. Zezhou Wu & Lirong Luo & Heng Li & Ying Wang & Guoqiang Bi & Maxwell Fordjour Antwi-Afari, 2021. "An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability," IJERPH, MDPI, vol. 18(21), pages 1-21, October.

    More about this item

    Keywords

    prefabrication; LCA; LCA tools;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:973-:d:1036603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.