IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7417-d937553.html
   My bibliography  Save this article

Numerical and Experimental Performance Evaluation of a Photovoltaic Thermal Integrated Membrane Desalination System

Author

Listed:
  • Sajid Ali

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Fahad Al-Amri

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Farooq Saeed

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

Abstract

Membrane desalination (MD) is preferred over other desalination techniques since it requires a lower temperature gradient. Its performance can be further enhanced by preheating the intake of saline water. In this context, a novel solar-assisted air gap membrane desalination (AGMD) system was hypothesized. The motivation was derived from the fact that the use of solar energy to provide power and a pre-heating source for the intake of saline water can offer a sustainable alternative that can further enhance the acceptance of MD systems. Since solar panels suffer from a loss of efficiency as they heat up during operation, a solar-assisted air gap membrane desalination (AGMD) system can help to improve the overall system performance by (1) providing the necessary pumping power to operate the system and (2) improving solar panel performance by exchanging heat using water that is (3) used to pre-heat the saline water necessary for increased performance of the AGMD system. To verify the hypothesis, a solar-assisted AGMD system for freshwater production was theoretically designed, fabricated locally, and then tested experimentally. The effect of the process operating parameters and the ambient conditions on the overall performance of the proposed solar-assisted AGMD desalination unit is presented in detail, both theoretically and experimentally. The results indicated a direct correlation between the permeate flux, saline hot feed temperature, and hot feed flow rate. In addition, an inverse relationship between the cold feed temperature, cold feed flow rate, and the air gap thickness of the module was also observed and reported, thus, validating the hypothesis that a solar-assisted air gap membrane desalination (AGMD) system can help to boost performance.

Suggested Citation

  • Sajid Ali & Fahad Al-Amri & Farooq Saeed, 2022. "Numerical and Experimental Performance Evaluation of a Photovoltaic Thermal Integrated Membrane Desalination System," Energies, MDPI, vol. 15(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7417-:d:937553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    2. Nutakki Tirumala Uday Kumar & Andrew R. Martin, 2017. "Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE," Energies, MDPI, vol. 10(4), pages 1-22, April.
    3. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    4. Chang, Hsuan & Wang, Gow-Bin & Chen, Yih-Hang & Li, Chien-Chang & Chang, Cheng-Liang, 2010. "Modeling and optimization of a solar driven membrane distillation desalination system," Renewable Energy, Elsevier, vol. 35(12), pages 2714-2722.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chennan & Besarati, Saeb & Goswami, Yogi & Stefanakos, Elias & Chen, Huijuan, 2013. "Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle," Applied Energy, Elsevier, vol. 102(C), pages 1071-1080.
    2. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    3. Schäfer, Andrea I. & Hughes, Gordon & Richards, Bryce S., 2014. "Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 542-556.
    4. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    5. Mashhadikhan, Samaneh & Ahmadi, Reyhane & Ebadi Amooghin, Abtin & Sanaeepur, Hamidreza & Aminabhavi, Tejraj M. & Rezakazemi, Mashallah, 2024. "Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    7. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    8. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    9. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    10. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2017. "Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling," Renewable Energy, Elsevier, vol. 101(C), pages 467-483.
    11. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    12. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    13. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    14. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    15. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    16. Andreas N. Angelakis & Mohammad Valipour & Abdelkader T. Ahmed & Vasileios Tzanakakis & Nikolaos V. Paranychianakis & Jens Krasilnikoff & Renato Drusiani & Larry Mays & Fatma El Gohary & Demetris Kout, 2021. "Water Conflicts: From Ancient to Modern Times and in the Future," Sustainability, MDPI, vol. 13(8), pages 1-31, April.
    17. Dhanu Radha Samayamanthula & Badriyah Alhalaili & Harinath Yapati & Adnan Akber & Chidambaram Sabarathinam, 2022. "Innovative Bacterial Removal Technique Using Green Synthetic Nano Curcumin Zinc (II) Complex for Sustainable Water Resource Management," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    18. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Van Geluwe, Steven & Braeken, Leen & Robberecht, Thomas & Jans, Maarten & Creemers, Claude & Van der Bruggen, Bart, 2011. "Evaluation of electrodialysis for scaling prevention of nanofiltration membranes at high water recoveries," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 34-42.
    20. N. Evelin Paucar & Chikashi Sato, 2022. "Coupling Microbial Fuel Cell and Hydroponic System for Electricity Generation, Organic Removal, and Nutrient Recovery via Plant Production from Wastewater," Energies, MDPI, vol. 15(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7417-:d:937553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.