IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7417-d937553.html
   My bibliography  Save this article

Numerical and Experimental Performance Evaluation of a Photovoltaic Thermal Integrated Membrane Desalination System

Author

Listed:
  • Sajid Ali

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Fahad Al-Amri

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Farooq Saeed

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

Abstract

Membrane desalination (MD) is preferred over other desalination techniques since it requires a lower temperature gradient. Its performance can be further enhanced by preheating the intake of saline water. In this context, a novel solar-assisted air gap membrane desalination (AGMD) system was hypothesized. The motivation was derived from the fact that the use of solar energy to provide power and a pre-heating source for the intake of saline water can offer a sustainable alternative that can further enhance the acceptance of MD systems. Since solar panels suffer from a loss of efficiency as they heat up during operation, a solar-assisted air gap membrane desalination (AGMD) system can help to improve the overall system performance by (1) providing the necessary pumping power to operate the system and (2) improving solar panel performance by exchanging heat using water that is (3) used to pre-heat the saline water necessary for increased performance of the AGMD system. To verify the hypothesis, a solar-assisted AGMD system for freshwater production was theoretically designed, fabricated locally, and then tested experimentally. The effect of the process operating parameters and the ambient conditions on the overall performance of the proposed solar-assisted AGMD desalination unit is presented in detail, both theoretically and experimentally. The results indicated a direct correlation between the permeate flux, saline hot feed temperature, and hot feed flow rate. In addition, an inverse relationship between the cold feed temperature, cold feed flow rate, and the air gap thickness of the module was also observed and reported, thus, validating the hypothesis that a solar-assisted air gap membrane desalination (AGMD) system can help to boost performance.

Suggested Citation

  • Sajid Ali & Fahad Al-Amri & Farooq Saeed, 2022. "Numerical and Experimental Performance Evaluation of a Photovoltaic Thermal Integrated Membrane Desalination System," Energies, MDPI, vol. 15(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7417-:d:937553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    2. Nutakki Tirumala Uday Kumar & Andrew R. Martin, 2017. "Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE," Energies, MDPI, vol. 10(4), pages 1-22, April.
    3. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    4. Chang, Hsuan & Wang, Gow-Bin & Chen, Yih-Hang & Li, Chien-Chang & Chang, Cheng-Liang, 2010. "Modeling and optimization of a solar driven membrane distillation desalination system," Renewable Energy, Elsevier, vol. 35(12), pages 2714-2722.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chennan & Besarati, Saeb & Goswami, Yogi & Stefanakos, Elias & Chen, Huijuan, 2013. "Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle," Applied Energy, Elsevier, vol. 102(C), pages 1071-1080.
    2. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    3. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    4. Schäfer, Andrea I. & Hughes, Gordon & Richards, Bryce S., 2014. "Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 542-556.
    5. Mashhadikhan, Samaneh & Ahmadi, Reyhane & Ebadi Amooghin, Abtin & Sanaeepur, Hamidreza & Aminabhavi, Tejraj M. & Rezakazemi, Mashallah, 2024. "Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    7. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    8. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    9. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2017. "Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling," Renewable Energy, Elsevier, vol. 101(C), pages 467-483.
    10. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    11. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    12. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    13. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    14. Hamed Farahani & Mostafa Haghighi & Mohammad Mahdi Behvand Usefi & Mostafa Ghasemi, 2024. "Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells," Sustainability, MDPI, vol. 16(23), pages 1-27, November.
    15. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    16. Janeth Marwa & Mesia Lufingo & Chicgoua Noubactep & Revocatus Machunda, 2018. "Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    17. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
    18. Lu Liu & Yuanxin Yao & Xuebing Zhou & Yanan Zhang & Deqing Liang, 2021. "Improved Formation Kinetics of Carbon Dioxide Hydrate in Brine Induced by Sodium Dodecyl Sulfate," Energies, MDPI, vol. 14(8), pages 1-12, April.
    19. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    20. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7417-:d:937553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.