IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7404-d937174.html
   My bibliography  Save this article

Experimental Study on the Performance of a Space Radiation Cooling System under Different Environmental Factors

Author

Listed:
  • Zhaoyi Zhuang

    (College of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Yanbiao Xu

    (College of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Qian Wu

    (Shandong Superego Ground Source Heat Pump Technology Co., Ltd., Binzhou 256600, China)

  • Bing Liu

    (Shandong Superego Ground Source Heat Pump Technology Co., Ltd., Binzhou 256600, China)

  • Bowen Li

    (College of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Jin Zhao

    (College of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Xuebin Yang

    (College of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, China)

Abstract

As a new passive cooling technology, space radiation cooling has great potential for development because the cooling itself has no energy consumption, and the radiation heat exchanger does not affect the appearance, with low noise and low cost. Several rectangular stainless steel plates coated with RLHY-2 material are used as the transmitter for the field test. The experimental results show that, in the case of no windscreen, the increase of outdoor humidity will reduce the cooling effect, and the greater the humidity, the more pronounced the reduction effect. Significantly when the humidity increases from 78% to 90%, the cooling power of the cooler reduces from 102 to 67 W/m 2 . The thickness of the cloud layer also affects the cooling effect of the space radiative cooler. Compared with the clear weather, the cooling power of the cooler is reduced by 11.65 W/m 2 on average under foggy weather conditions. Compared with the force-1 wind and the force-3 wind, the cooling effect of the cooler is the worst under the condition of the force-2 wind, and the average cooling power is only 49.76 W/m 2 . In addition, laying polyethylene (PE) film as a windscreen is beneficial to improving the radiative cooling effect, and the difference in surface temperature between the two is up to 3 °C. This research provides a theoretical basis and practical reference for applying radiative cooling technology in different regions and seasons and adjusting and improving its effects.

Suggested Citation

  • Zhaoyi Zhuang & Yanbiao Xu & Qian Wu & Bing Liu & Bowen Li & Jin Zhao & Xuebin Yang, 2022. "Experimental Study on the Performance of a Space Radiation Cooling System under Different Environmental Factors," Energies, MDPI, vol. 15(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7404-:d:937174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Jie & Xu, Chengfeng & Ao, Xianze & Lu, Kegui & Zhao, Bin & Pei, Gang, 2022. "A dual-layer polymer-based film for all-day sub-ambient radiative sky cooling," Energy, Elsevier, vol. 254(PA).
    2. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    3. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandr Tsoy & Alexandr Granovskiy & Dmitriy Koretskiy & Diana Tsoy-Davis & Nikita Veselskiy & Mikhail Alechshenko & Alexandr Minayev & Inara Kim & Rita Jamasheva, 2023. "Experimental Study of the Heat Flow and Energy Consumption during Liquid Cooling Due to Radiative Heat Transfer in Winter," Energies, MDPI, vol. 16(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    3. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    5. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    6. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    7. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    8. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    9. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    10. Pospíšilík, Václav & Honus, Stanislav & Lukeš, Roman & Jadlovec, Marek & Štukavec, Ondřej, 2024. "Differences in heat losses between glazing of various emissivities related to night sky radiation: Experimental and numerical analysis," Energy, Elsevier, vol. 290(C).
    11. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    12. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    13. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    14. Wong, Ross Y.M. & Tso, C.Y. & Jeong, S.Y. & Fu, S.C. & Chao, Christopher Y.H., 2023. "Critical sky temperatures for passive radiative cooling," Renewable Energy, Elsevier, vol. 211(C), pages 214-226.
    15. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    16. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    17. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Zhang, Yelin & Tso, Chi Yan & Tse, Chung Fai Norman & Fong, Alan Ming-Lun & Lin, Kaixin & Sun, Yongjun, 2024. "A novel radiative sky cooler system with enhanced daytime cooling performance to reduce building roof heat gains in subtropical climate," Renewable Energy, Elsevier, vol. 220(C).
    19. Lv, Song & Sun, Xinyi & Zhang, Bolong & Lai, Yin & Yang, Jiahao, 2024. "Research on the influence and optimization of sunshade effect on radiative cooling performance," Energy, Elsevier, vol. 297(C).
    20. Lv, Song & Zhang, Bolong & Ji, Yishuang & Ren, Juwen & Yang, Jiahao & Lai, Yin & Chang, Zhihao, 2023. "Comprehensive research on a high performance solar and radiative cooling driving thermoelectric generator system with concentration for passive power generation," Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7404-:d:937174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.