IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034679.html
   My bibliography  Save this article

Differences in heat losses between glazing of various emissivities related to night sky radiation: Experimental and numerical analysis

Author

Listed:
  • Pospíšilík, Václav
  • Honus, Stanislav
  • Lukeš, Roman
  • Jadlovec, Marek
  • Štukavec, Ondřej

Abstract

Radiation from cloudless night skies causes significant heat loss through glazing, resulting in higher heating costs. This study investigated the heat loss of glazing due to night-sky radiation as a function of its emissivity. A measuring apparatus comprising measuring stations mounted with glazing and two different emissivities was set up. The glazing losses and amount of energy radiated from the sky in the infrared region were measured. Additionally, to indicate the impact of other factors, a numerical model of glazing heat loss was prepared. A difference in temperature and heat losses between conventional glazing with an emissivity of 0.89 (29.47 W/m2) and coated glazing with an emissivity of 0.14 (5.43 W/m2) was observed. The temperature difference and heat losses were 54.26 % (1.28 °C) and 81.6 % (24.04 W/m2), respectively, in favour of the coated sample. The novelty of this study is the determination of heat losses from glazing of different emissivities due to radiation in the night sky under real conditions, with the indication of other factors. These results motivate further research on coated glazing to reduce heat loss. This numerical model can serve as a blueprint for examining similar applications.

Suggested Citation

  • Pospíšilík, Václav & Honus, Stanislav & Lukeš, Roman & Jadlovec, Marek & Štukavec, Ondřej, 2024. "Differences in heat losses between glazing of various emissivities related to night sky radiation: Experimental and numerical analysis," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034679
    DOI: 10.1016/j.energy.2023.130073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vall, Sergi & Castell, Albert, 2017. "Radiative cooling as low-grade energy source: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 803-820.
    2. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    3. Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
    4. Nilsson, T.M.J. & Vargas, W.E. & Niklasson, G.A. & Granqvist, C.G., 1994. "Condensation of water by radiative cooling," Renewable Energy, Elsevier, vol. 5(1), pages 310-317.
    5. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    6. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    7. Liu, Jie & Xu, Chengfeng & Ao, Xianze & Lu, Kegui & Zhao, Bin & Pei, Gang, 2022. "A dual-layer polymer-based film for all-day sub-ambient radiative sky cooling," Energy, Elsevier, vol. 254(PA).
    8. Argiriou, A. & Santamouris, M. & Assimakopoulos, D.N., 1994. "Assessment of the radiative cooling potential of a collector using hourly weather data," Energy, Elsevier, vol. 19(8), pages 879-888.
    9. Hu, Mingke & Zhao, Bin & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    3. Lv, Song & Zhang, Bolong & Ji, Yishuang & Ren, Juwen & Yang, Jiahao & Lai, Yin & Chang, Zhihao, 2023. "Comprehensive research on a high performance solar and radiative cooling driving thermoelectric generator system with concentration for passive power generation," Energy, Elsevier, vol. 275(C).
    4. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    5. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    6. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    7. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    8. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).
    9. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.
    10. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    13. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    14. Jia, Linrui & Lu, Lin & Gong, Quan & Jiao, Kai, 2024. "Analytical and experimental analyses on cooling performances of radiative SkyCool radiators with various interior flowing channels," Energy, Elsevier, vol. 295(C).
    15. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    16. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Lv, Song & Sun, Xinyi & Zhang, Bolong & Lai, Yin & Yang, Jiahao, 2024. "Research on the influence and optimization of sunshade effect on radiative cooling performance," Energy, Elsevier, vol. 297(C).
    18. Bu, Fan & Yan, Da & Tan, Gang & An, Jingjing, 2024. "A novel approach based on equivalent sky radiative temperature for quick computation of radiative cooling in building energy simulation," Renewable Energy, Elsevier, vol. 221(C).
    19. Lv, Song & Ji, Yishuang & Ji, Yitong & Qian, Zuoqin & Ren, Juwen & Zhang, Bolong & Lai, Yin & Yang, Jiahao & Chang, Zhihao, 2022. "Experimental and numerical comparative investigation on 24h radiative cooling performance of a simple organic composite film," Energy, Elsevier, vol. 261(PA).
    20. Jia, Linrui & Lu, Lin & Chen, Jianheng & Han, Jie, 2022. "A novel radiative sky cooling-assisted ground-coupled heat exchanger system to improve thermal and energy efficiency for buildings in hot and humid regions," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.