IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7210-d930502.html
   My bibliography  Save this article

Modelling Case Study of Compact Combination Hybrids as Low Disruption Decarbonised Heat

Author

Listed:
  • Stephen Watson

    (School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • George Bennett

    (Department of Business, Energy and Industrial Strategy, HM Government, 1 Victoria Street, London SW1H 0ET, UK)

Abstract

Transitioning from predominantly natural gas domestic heating to low carbon heating is one of the major challenges of the UK’s net zero decarbonisation pathway. Compact wall-hung combination boilers are the dominant heating appliance and continue to be installed as a rate of over 1.5 million per year, compared to less than 50 k per year for Heat Pumps. The disparity persists despite repeated Government support in the form of the Renewable Heat Incentive and the Green Homes Grant. Compact hybrid appliances offer a technology solution similar to the current combination boiler in terms of size and performance, which could be attractive to consumers. However, there is currently little knowledge of the emissions savings that could be achieved in practice by compact hybrid appliances. This research systematically analyses real world high frequency boiler data to evaluate the potential of such appliances to make carbon savings while emulating combination boiler operation. By utilising high frequency diagnostic data from combination boilers, the disaggregated (hot water and heating) demand is mapped onto hybrid models to determine the energy and emission impact. Exploration of the relative power output of the HP and boiler components of the modelled hybrid appliances provides insight into the appropriate specification of compact hybrids which can deliver similar heat service to boilers while maximising emissions savings. The analysis shows that hybrid appliances with moderately sized HPs can significantly contribute to the decarbonisation of the homes considered in the study. Considerable disruption could be avoided in retrofit due to the physical size of the proposed heat pump and ability of the hybrid system to operate with the existing heat emitter network.

Suggested Citation

  • Stephen Watson & George Bennett, 2022. "Modelling Case Study of Compact Combination Hybrids as Low Disruption Decarbonised Heat," Energies, MDPI, vol. 15(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7210-:d:930502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    2. Elwell, Clifford A. & Biddulph, Phillip & Lowe, Robert & Oreszczyn, Tadj, 2015. "Determining the impact of regulatory policy on UK gas use using Bayesian analysis on publicly available data," Energy Policy, Elsevier, vol. 86(C), pages 770-783.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    2. Verástegui, Felipe & Lorca, Álvaro & Negrete-Pincetic, Matias & Olivares, Daniel, 2020. "Firewood heat electrification impacts in the Chilean power system," Energy Policy, Elsevier, vol. 144(C).
    3. Sourav Khanna & Victor Becerra & Adib Allahham & Damian Giaouris & Jamie M. Foster & Keiron Roberts & David Hutchinson & Jim Fawcett, 2020. "Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study," Energies, MDPI, vol. 13(3), pages 1-27, January.
    4. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    5. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    6. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    7. Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
    8. Broad, Oliver & Hawker, Graeme & Dodds, Paul E., 2020. "Decarbonising the UK residential sector: The dependence of national abatement on flexible and local views of the future," Energy Policy, Elsevier, vol. 140(C).
    9. Mathilde Fajardy & David Reiner, 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Working Papers EPGR2037, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Canet, Alexandre & Qadrdan, Meysam & Jenkins, Nick, 2021. "Heat demand mapping and assessment of heat supply options for local areas – The case study of Neath Port Talbot," Energy, Elsevier, vol. 217(C).
    11. Kozarcanin, S. & Hanna, R. & Staffell, I. & Gross, R. & Andresen, G.B., 2020. "Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe," Energy Policy, Elsevier, vol. 140(C).
    12. Matthew, Chris, 2024. "The multiple benefits of current and potential energy efficiency policies: A Scottish islands case study," Energy Policy, Elsevier, vol. 187(C).
    13. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
    14. Edmunds, Calum & Galloway, Stuart & Dixon, James & Bukhsh, Waqquas & Elders, Ian, 2021. "Hosting capacity assessment of heat pumps and optimised electric vehicle charging on low voltage networks," Applied Energy, Elsevier, vol. 298(C).
    15. Ehsan, Ali & Preece, Robin, 2022. "Quantifying the impacts of heat decarbonisation pathways on the future electricity and gas demand," Energy, Elsevier, vol. 254(PA).
    16. Louis-Gaëtan Giraudet & Antoine Missemer, 2023. "The History of Energy Efficiency in Economics: Breakpoints and Regularities," Post-Print halshs-02301636, HAL.
    17. Thomaßen, Georg & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo, 2021. "The decarbonisation of the EU heating sector through electrification: A parametric analysis," Energy Policy, Elsevier, vol. 148(PA).
    18. Eggimann, Sven & Usher, Will & Eyre, Nick & Hall, Jim W., 2020. "How weather affects energy demand variability in the transition towards sustainable heating," Energy, Elsevier, vol. 195(C).
    19. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    20. Quarton, Christopher J. & Samsatli, Sheila, 2020. "Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7210-:d:930502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.