IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4102-d830573.html
   My bibliography  Save this article

Solar Desiccant Cooling System for a Commercial Building in Kuwait’s Climatic Condition

Author

Listed:
  • Ramadas Narayanan

    (Fuel & Energy Research Group, School of Engineering and Technology, Central Queensland University, Bundaberg, QLD 4670, Australia)

  • Abeer Abdullah Al Anazi

    (School of Engineering, Australian Univeristy, Kuwait, Safat 13015, Kuwait)

  • Roberto Pippia

    (Fuel & Energy Research Group, School of Engineering and Technology, Central Queensland University, Bundaberg, QLD 4670, Australia)

  • Mohammad G. Rasul

    (Fuel & Energy Research Group, School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia)

Abstract

The use of air conditioning in buildings to provide a comfortable environment accounts for up to 75% of the electricity consumed in Kuwait for the hot season from April through to the end of October. The widespread adoption of air conditioning systems in buildings has resulted in an increased demand for electricity. This has led to an increased peak load demand that has resulted in a larger carbon footprint and placed the electricity grid under significant strain. Heat-driven air conditioning systems that use solar energy are now emerging as alternatives to electricity-driven conventional refrigerated air conditioners. These systems are more energy-efficient, with lower carbon emissions while also ensuring better indoor air quality and comfort when optimally designed. Among the heat-driven air conditioning systems, the desiccant cooling system is among the systems with the most potential. This paper presents a numerical investigation of the design optimization of solar desiccant cooling systems for Kuwait’s climate. The numerical model of the system is developed using validated components. The various design configurations analysed include a solar heating system and regeneration air for the desiccant wheel. It is found that an evacuated tube solar collector in conjunction with return air from the building to regenerate the desiccant wheel provides the best results.

Suggested Citation

  • Ramadas Narayanan & Abeer Abdullah Al Anazi & Roberto Pippia & Mohammad G. Rasul, 2022. "Solar Desiccant Cooling System for a Commercial Building in Kuwait’s Climatic Condition," Energies, MDPI, vol. 15(11), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4102-:d:830573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hammoudeh, Shawkat & Ayyash, Saud & Suri, R. K., 1984. "Conventional and solar cooling systems for Kuwait : An economic analysis," Energy Economics, Elsevier, vol. 6(4), pages 259-266, October.
    2. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    3. Ramadas Narayanan & Edward Halawa & Sanjeev Jain, 2019. "Dehumidification Potential of a Solid Desiccant Based Evaporative Cooling System with an Enthalpy Exchanger Operating in Subtropical and Tropical Climates," Energies, MDPI, vol. 12(14), pages 1-18, July.
    4. Al-Homoud, A.A. & Suri, R.K. & Al-Roumi, Raed & Maheshwari, G.P., 1996. "Experiences with solar cooling systems in Kuwait," Renewable Energy, Elsevier, vol. 9(1), pages 664-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatolijs Borodinecs & Arturs Palcikovskis & Vladislavs Jacnevs, 2022. "Indoor Air CO 2 Sensors and Possible Uncertainties of Measurements: A Review and an Example of Practical Measurements," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Hands, Stuart & Sethuvenkatraman, Subbu & Peristy, Mark & Rowe, Daniel & White, Stephen, 2016. "Performance analysis & energy benefits of a desiccant based solar assisted trigeneration system in a building," Renewable Energy, Elsevier, vol. 85(C), pages 865-879.
    3. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    4. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    5. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    7. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    8. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    9. Ramadas Narayanan & Subbu Sethuvenkatraman & Roberto Pippia, 2022. "Energy and Comfort Evaluation of Fresh Air-Based Hybrid Cooling System in Hot and Humid Climates," Energies, MDPI, vol. 15(20), pages 1-13, October.
    10. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    11. Chai, Shaowei & Sun, Xiangyu & Zhao, Yao & Dai, Yanjun, 2019. "Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger," Energy, Elsevier, vol. 171(C), pages 306-314.
    12. Liu, Xiao-Hua & Zhang, Tao & Zheng, Yu-Wei & Tu, Rang, 2016. "Performance investigation and exergy analysis of two-stage desiccant wheel systems," Renewable Energy, Elsevier, vol. 86(C), pages 877-888.
    13. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    14. Bi, Yin & Yang, Wansheng & Zhao, Xudong, 2018. "Numerical investigation of a solar/waste energy driven sorption/desorption cycle employing a novel adsorbent bed," Energy, Elsevier, vol. 149(C), pages 84-97.
    15. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    17. Peter Niemann & Finn Richter & Arne Speerforck & Gerhard Schmitz, 2019. "Desiccant-Assisted Air Conditioning System Relying on Solar and Geothermal Energy during Summer and Winter," Energies, MDPI, vol. 12(16), pages 1-20, August.
    18. Patlitzianas, Konstantinos D. & Doukas, Haris & Psarras, John, 2006. "Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts," Energy Policy, Elsevier, vol. 34(18), pages 3719-3726, December.
    19. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    20. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4102-:d:830573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.