IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6607-d911124.html
   My bibliography  Save this article

Novel Multi-Physics Computational Simulation of a 10 kW Permanent Magnet Motor for Podded Propulsion

Author

Listed:
  • Jang-Hyun Park

    (Electric Energy Conversion Engineering, University of Science and Technology, Changwon 51543, Korea
    Electric Machine and Drive System Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Tae-Woo Lee

    (Electric Machine and Drive System Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Yeon-Ho Jeong

    (Electric Machine and Drive System Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Do-Kwan Hong

    (Electric Energy Conversion Engineering, University of Science and Technology, Changwon 51543, Korea
    Electric Machine and Drive System Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

Abstract

This paper presents a 10 kW, 12-slot 10-pole surface-mounted permanent magnet synchronous motor (SPMSM) design with fractional-slot concentrated winding for a podded propulsion system. Its load is a propeller that is proportional to the square of the rotational speed and the fifth power of the propeller diameter. Taking this into account, three SPMSMs with rated rotational speeds of 600, 1200, and 1800 rpm with the same rated output power of 10 kW were analyzed. These were designed under the same conditions (i.e., torque per rotor volume, air-gap length, current density, power factor, fill-factor, and supply voltage). Based on the SPMSMs designed by electromagnetic analysis, the housing of a podded propulsor for each SPMSM was modeled for mechanical analysis, including such parameters as forced vibration, radiated noise, and modal acoustics analysis in air and water. From the modal acoustics analysis, it is confirmed that the natural frequencies of a structure in water are lower than those in air because of the added mass effect of water.

Suggested Citation

  • Jang-Hyun Park & Tae-Woo Lee & Yeon-Ho Jeong & Do-Kwan Hong, 2022. "Novel Multi-Physics Computational Simulation of a 10 kW Permanent Magnet Motor for Podded Propulsion," Energies, MDPI, vol. 15(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6607-:d:911124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojciech Litwin & Wojciech Leśniewski & Daniel Piątek & Karol Niklas, 2019. "Experimental Research on the Energy Efficiency of a Parallel Hybrid Drive for an Inland Ship," Energies, MDPI, vol. 12(9), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Łosiewicz & Waldemar Mironiuk & Witold Cioch & Ewelina Sendek-Matysiak & Wojciech Homik, 2022. "Application of Generator-Electric Motor System for Emergency Propulsion of a Vessel in the Event of Loss of the Full Serviceability of the Diesel Main Engine," Energies, MDPI, vol. 15(8), pages 1-19, April.
    2. Magdalena Kunicka & Wojciech Litwin, 2019. "Energy Demand of Short-Range Inland Ferry with Series Hybrid Propulsion Depending on the Navigation Strategy," Energies, MDPI, vol. 12(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6607-:d:911124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.