Design and Assessment of a LIDAR-Based Model Predictive Wind Turbine Control
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bottasso, C.L. & Pizzinelli, P. & Riboldi, C.E.D. & Tasca, L., 2014. "LiDAR-enabled model predictive control of wind turbines with real-time capabilities," Renewable Energy, Elsevier, vol. 71(C), pages 442-452.
- Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abhinandan Routray & Yiza Srikanth Reddy & Sung-ho Hur, 2023. "Predictive Control of a Wind Turbine Based on Neural Network-Based Wind Speed Estimation," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
- Stefano Dettori & Alessandro Maddaloni & Filippo Galli & Valentina Colla & Federico Bucciarelli & Damaso Checcacci & Annamaria Signorini, 2021. "Steam Turbine Rotor Stress Control through Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(13), pages 1-30, July.
- Yuan, Yuan & Tang, J., 2017. "Adaptive pitch control of wind turbine for load mitigation under structural uncertainties," Renewable Energy, Elsevier, vol. 105(C), pages 483-494.
- Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
- Atsushi Yamaguchi & Iman Yousefi & Takeshi Ishihara, 2020. "Reduction in the Fluctuating Load on Wind Turbines by Using a Combined Nacelle Acceleration Feedback and Lidar-Based Feedforward Control," Energies, MDPI, vol. 13(17), pages 1-18, September.
- Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
- Abhinandan Routray & Yiza Srikanth Reddy & Sung-ho Hur, 2023. "Predictive Control of a Wind Turbine Based on Neural Network-Based Wind Speed Estimation," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
- Tang, Shengming & Guo, Yun & Wang, Xu & Zhu, Rong & Tang, Jie & Zhang, Shuai, 2023. "Evaluation and impact factors of Doppler wind lidar during Super Typhoon Lekima (2019)," Renewable Energy, Elsevier, vol. 205(C), pages 305-316.
- Francesco Castellani & Davide Astolfi, 2020. "Editorial on Special Issue “Wind Turbine Power Optimization Technology”," Energies, MDPI, vol. 13(7), pages 1-4, April.
- Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
- Teng, Yiming & Hu, Dewen & Wu, Feng & Zhang, Ridong & Gao, Furong, 2020. "Fast economic model predictive control for marine current turbine generator system," Renewable Energy, Elsevier, vol. 166(C), pages 108-116.
- Xiaojun Shen & Chongchen Zhou & Guojie Li & Xuejiao Fu & Tek Tjing Lie, 2018. "Overview of Wind Parameters Sensing Methods and Framework of a Novel MCSPV Recombination Sensing Method for Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-23, July.
- José Antonio Cortajarena & Oscar Barambones & Patxi Alkorta & Jon Cortajarena, 2021. "Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
- Pustina, L. & Biral, F. & Serafini, J., 2022. "A novel Economic Nonlinear Model Predictive Controller for power maximisation on wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Song, Dongran & Tu, Yanping & Wang, Lei & Jin, Fangjun & Li, Ziqun & Huang, Chaoneng & Xia, E & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Hoon Joo, Young, 2022. "Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator," Applied Energy, Elsevier, vol. 312(C).
- Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
- Tang, Shengming & Li, Tiantian & Guo, Yun & Zhu, Rong & Qu, Hongya, 2022. "Correction of various environmental influences on Doppler wind lidar based on multiple linear regression model," Renewable Energy, Elsevier, vol. 184(C), pages 933-947.
- Xiangjie Liu & Le Feng & Xiaobing Kong, 2022. "A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System," Energies, MDPI, vol. 15(13), pages 1-22, June.
- Wang, Jianing & Zhu, Hongqiu & Zhang, Yingjie & Cheng, Fei & Zhou, Can, 2023. "A novel prediction model for wind power based on improved long short-term memory neural network," Energy, Elsevier, vol. 265(C).
More about this item
Keywords
wind turbine control; LIDAR wind information; model predictive control (MPC);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6429-:d:905571. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.