IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6419-d904929.html
   My bibliography  Save this article

Harmonic Compensation via Grid-Tied Three-Phase Inverter with Variable Structure I&I Observer-Based Control Scheme

Author

Listed:
  • Manuel Flota-Bañuelos

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97310, Mexico)

  • Homero Miranda-Vidales

    (Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 304, Zona Universitaria, San Luis Potosi 78210, Mexico)

  • Bernardo Fernández

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97310, Mexico)

  • Luis J. Ricalde

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97310, Mexico)

  • A. Basam

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97310, Mexico)

  • J. Medina

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Merida 97310, Mexico)

Abstract

The power inverter topologies are indispensable devices to incorporate distributed generation schemes, like photovoltaic energy sources into the AC main. The nonlinear behavior of the power inverter draws a challenge when it comes to their control policy, rendering linear control methods often inadequate for the application. The control complexity can be further increased by the LCL filters, which are the preferred way to mitigate the current ripple caused by the inverter switching. This paper presents a robust variable structure control for a three-phase grid-tied inverter with an LCL filter. As well to the benefits of the sliding mode control (SMC), which is one of the control methods applied by power converters founded in literature, the proposed control scheme features a novel partial state observer based on the immersion and invariance technique, which thanks to its inherent robustness and speed of convergence is adequate for this application. This observer eliminates the need for physical current sensors, decreasing the overall cost and size, as well as probable sources of noise. The proposed controller is meant for a three-phase grid-tied inverter to inject active power to the grid while harmonics generated by nonlinear loads are compensated. The simulation results prove the effectiveness of the proposed method by compensating for current harmonics produced by the nonlinear loads and maintaining a low total harmonic distortion as recommended by the STD-IEEE519-2014, regardless of whether the system provides active power or not.

Suggested Citation

  • Manuel Flota-Bañuelos & Homero Miranda-Vidales & Bernardo Fernández & Luis J. Ricalde & A. Basam & J. Medina, 2022. "Harmonic Compensation via Grid-Tied Three-Phase Inverter with Variable Structure I&I Observer-Based Control Scheme," Energies, MDPI, vol. 15(17), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6419-:d:904929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengcheng Li & Liming Huo & Yingjun Guo & Guoqing An & Xiaoqiang Guo & Zheng Li & Hexu Sun, 2022. "Modulation and Control Strategy of 3CH4 Combined Current Source Grid-Connected Inverter," Energies, MDPI, vol. 15(12), pages 1-16, June.
    2. María Reveles-Miranda & Diego Fernando Sánchez-Flórez & José Ricardo Cruz-Chan & Eduardo Ernesto Ordoñez-López & Manuel Flota-Bañuelos & Daniella Pacheco-Catalán, 2018. "The Control Scheme of the Multifunction Inverter for Power Factor Improvement," Energies, MDPI, vol. 11(7), pages 1-17, June.
    3. Abdallah El Ghaly & Mohamad Tarnini & Nazih Moubayed & Khaled Chahine, 2022. "A Filter-Less Time-Domain Method for Reference Signal Extraction in Shunt Active Power Filters," Energies, MDPI, vol. 15(15), pages 1-16, July.
    4. Yeqin Wang & Yan Yang & Rui Liang & Tao Geng & Weixing Zhang, 2022. "Adaptive Current Control for Grid-Connected Inverter with Dynamic Recurrent Fuzzy-Neural-Network," Energies, MDPI, vol. 15(11), pages 1-20, June.
    5. Petre-Marian Nicolae & Ileana-Diana Nicolae & Marian-Stefan Nicolae, 2022. "Some Considerations Regarding the Measurement of the Compensation Efficiency in Three-Phase Systems," Energies, MDPI, vol. 15(14), pages 1-26, July.
    6. Khosravi, N. & Abdolmohammadi, H.R. & Bagheri, S. & Miveh, M.R., 2021. "Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Jenn-Jong Shieh & Kuo-Ing Hwu & You-Yang Li, 2022. "A Single-Voltage-Source Class-D Boost Multi-Level Inverter with Self-Balanced Capacitors," Energies, MDPI, vol. 15(11), pages 1-15, June.
    8. Aditi Atul Desai & Suresh Mikkili & Tomonobu Senjyu, 2022. "Novel H6 Transformerless Inverter for Grid Connected Photovoltaic System to Reduce the Conduction Loss and Enhance Efficiency," Energies, MDPI, vol. 15(10), pages 1-22, May.
    9. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2018. "A Dual-Function Instantaneous Power Theory for Operation of Three-Level Neutral-Point-Clamped Inverter-Based Shunt Active Power Filter," Energies, MDPI, vol. 11(6), pages 1-17, June.
    10. Kryonidis, Georgios C. & Kontis, Eleftherios O. & Papadopoulos, Theofilos A. & Pippi, Kalliopi D. & Nousdilis, Angelos I. & Barzegkar-Ntovom, Georgios A. & Boubaris, Alexandros D. & Papanikolaou, Nick, 2021. "Ancillary services in active distribution networks: A review of technological trends from operational and online analysis perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Flota-Bañuelos & María Espinosa-Trujillo & José Cruz-Chan & Tariq Kamal, 2023. "Experimental Study of an Inverter Control for Reactive Power Compensation in a Grid-Connected Solar Photovoltaic System Using Sliding Mode Control," Energies, MDPI, vol. 16(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    2. K. Muthuvel & M. Vijayakumar, 2020. "Solar PV Sustained Quasi Z-Source Network-Based Unified Power Quality Conditioner for Enhancement of Power Quality," Energies, MDPI, vol. 13(10), pages 1-26, May.
    3. Theofilos A. Papadopoulos & Kalliopi D. Pippi & Georgios A. Barzegkar-Ntovom & Eleftherios O. Kontis & Angelos I. Nousdilis & Christos L. Athanasiadis & Georgios C. Kryonidis, 2023. "Validation of a Holistic System for Operational Analysis and Provision of Ancillary Services in Active Distribution Networks," Energies, MDPI, vol. 16(6), pages 1-27, March.
    4. Muhannad Alaraj & Anirudh Dube & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2021. "Design and Development of a Proficient Converter for Solar Photovoltaic Based Sustainable Power Generating System," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    5. Sheha, Moataz & Mohammadi, Kasra & Powell, Kody, 2021. "Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage," Applied Energy, Elsevier, vol. 282(PA).
    6. Maria Fotopoulou & Panagiotis Pediaditis & Niki Skopetou & Dimitrios Rakopoulos & Sotirios Christopoulos & Avraam Kartalidis, 2024. "A Review of the Energy Storage Systems of Non-Interconnected European Islands," Sustainability, MDPI, vol. 16(4), pages 1-24, February.
    7. Mohamed Mohamed Khaleel & Mohd Rafi Adzman & Samila Mat Zali, 2021. "An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM," Energies, MDPI, vol. 14(21), pages 1-26, October.
    8. Abdallah El Ghaly & Mohamad Tarnini & Nazih Moubayed & Khaled Chahine, 2022. "A Filter-Less Time-Domain Method for Reference Signal Extraction in Shunt Active Power Filters," Energies, MDPI, vol. 15(15), pages 1-16, July.
    9. Paweł Kelm & Rozmysław Mieński & Irena Wasiak, 2024. "Modular PV System for Applications in Prosumer Installations with Uncontrolled, Unbalanced and Non-Linear Loads," Energies, MDPI, vol. 17(7), pages 1-13, March.
    10. Dimitris Drikakis & Talib Dbouk, 2022. "The Role of Computational Science in Wind and Solar Energy: A Critical Review," Energies, MDPI, vol. 15(24), pages 1-20, December.
    11. Jenn-Jong Shieh & Kuo-Ing Hwu & Sheng-Ju Chen, 2023. "Perspective of Voltage-Fed Single-Phase Multilevel DC-AC Inverters," Energies, MDPI, vol. 16(2), pages 1-22, January.
    12. Đorđe Lazović & Željko Đurišić, 2023. "Advanced Flexibility Support through DSO-Coordinated Participation of DER Aggregators in the Balancing Market," Energies, MDPI, vol. 16(8), pages 1-26, April.
    13. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    15. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    16. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    17. Francisco José Gimeno-Sales & Salvador Orts-Grau & Alejandro Escribá-Aparisi & Pablo González-Altozano & Ibán Balbastre-Peralta & Camilo Itzame Martínez-Márquez & María Gasque & Salvador Seguí-Chilet, 2020. "PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    18. Rozmysław Mieński & Irena Wasiak & Paweł Kelm, 2023. "Integration of PV Sources in Prosumer Installations Eliminating Their Negative Impact on the Supplying Grid and Optimizing the Microgrid Operation," Energies, MDPI, vol. 16(8), pages 1-17, April.
    19. Jenn-Jong Shieh & Kuo-Ing Hwu & You-Yang Li, 2022. "Analysis and Modeling of a Single-Power-Source T-Type 7-Level Single-Phase DC-AC Inverter with Voltage Gain of 3," Energies, MDPI, vol. 15(21), pages 1-26, October.
    20. Luo, Tengqi & Xuan, Ang & Wang, Yafei & Li, Guanglei & Fang, Juan & Liu, Zhengguang, 2023. "Energy efficiency evaluation and optimization of active distribution networks with building integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6419-:d:904929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.