IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5999-d892071.html
   My bibliography  Save this article

Global Warming Potential of New Gaseous Refrigerants Used in Chillers in HVAC Systems

Author

Listed:
  • Sylwia Szczęśniak

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50377 Wrocław, Poland)

  • Łukasz Stefaniak

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50377 Wrocław, Poland)

Abstract

Due to the global warming and resulting problems, attention has been paid to greenhouse gases released into the atmosphere since the 1980s and 1990s. For this reason, the Montreal Protocol and the Kyoto Protocol have tightened regulations on the use of gaseous refrigerants in both HVAC systems and industrial refrigeration. Gradually, new generations of gaseous refrigerants, that theoretically have much less negative environmental impact than their predecessors, are introduced into the market. The key parameter describing environmental impact is the GWP index, which is most often defined on a time horizon of 100 years. The long-term use of new generations of gaseous refrigerants in HVAC systems reduces CO 2 emissions into the atmosphere; however, given that new generation gases often have a short lifetime, it seems that the adopted assessment may not be applicable. The aim of the article was to show how emissions of CO 2 equivalent to the atmosphere differs in the short and long time horizon. The article presents the results of calculations of equivalent CO 2 emissions to the atmosphere caused by the operation of compressor cooling devices used in HVAC systems, where cooling is done with the use of water or a water-glycol solution. The analysis was carried out for 28 commonly used devices on the world market. The analyzed devices work with refrigerants: R513A, R454B, R290, R1234ze, R32, R134a, R410A. The equivalent emissions values for GWP 100 and GWP 20 were analyzed in relation to the unit power of the devices depends on refrigerant mass and number of fans. The study showed that in the case of new generation refrigerants with a very short lifetime, the use of GWP 100 indicators is misleading and does not fully reflect the effects of environmental impact, especially in the area of refrigeration equipment application. The article shows that the unit value of the cooling load related to the number of fans or the unit would be helpful in assessing the environmental impact of a cooling device.

Suggested Citation

  • Sylwia Szczęśniak & Łukasz Stefaniak, 2022. "Global Warming Potential of New Gaseous Refrigerants Used in Chillers in HVAC Systems," Energies, MDPI, vol. 15(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5999-:d:892071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwards, Morgan R. & McNerney, James & Trancik, Jessika E., 2016. "Testing emissions equivalency metrics against climate policy goals," Environmental Science & Policy, Elsevier, vol. 66(C), pages 191-198.
    2. Myles R. Allen & Jan S. Fuglestvedt & Keith P. Shine & Andy Reisinger & Raymond T. Pierrehumbert & Piers M. Forster, 2016. "New use of global warming potentials to compare cumulative and short-lived climate pollutants," Nature Climate Change, Nature, vol. 6(8), pages 773-776, August.
    3. Danny Harvey, L. D., 1993. "A guide to global warming potentials (GWPs)," Energy Policy, Elsevier, vol. 21(1), pages 24-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Fidorów-Kaprawy & Łukasz Stefaniak, 2022. "Potential of CO 2 Emission Reduction via Application of Geothermal Heat Exchanger and Passive Cooling in Residential Sector under Polish Climatic Conditions," Energies, MDPI, vol. 15(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    2. Solomon, Barry D., 1999. "New directions in emissions trading: the potential contribution of new institutional economics," Ecological Economics, Elsevier, vol. 30(3), pages 371-387, September.
    3. Saedpanah, Ehsan & Lahonian, Mansour & Malek Abad, Mahdi Zare, 2023. "Optimization of multi-source renewable energy air conditioning systems using a combination of transient simulation, response surface method, and 3E lifespan analysis," Energy, Elsevier, vol. 272(C).
    4. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    5. Yue Wang & Imke J. M. Boer & U. Martin Persson & Raimon Ripoll-Bosch & Christel Cederberg & Pierre J. Gerber & Pete Smith & Corina E. Middelaar, 2023. "Risk to rely on soil carbon sequestration to offset global ruminant emissions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "Carbon dioxide emissions and governance: A nonparametric analysis for the G-20," Energy Economics, Elsevier, vol. 40(C), pages 110-118.
    7. Otavio Cavalett & Marcos D. B. Watanabe & Mari Voldsund & Simon Roussanaly & Francesco Cherubini, 2024. "Paving the way for sustainable decarbonization of the European cement industry," Nature Sustainability, Nature, vol. 7(5), pages 568-580, May.
    8. Dorman,Peter, 2022. "Alligators in the Arctic and How to Avoid Them," Cambridge Books, Cambridge University Press, number 9781316516270, October.
    9. Tol, Richard S. J. & Berntsen, Terje K. & O'Neill, Brian C. & Fuglestvedt, Jan S. & Shine, Keith P. & Balkanski, Yves & Makra, Laszlo, 2008. "Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework," Papers WP257, Economic and Social Research Institute (ESRI).
    10. Nicoletta Brazzola & Jan Wohland & Anthony Patt, 2021. "Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
    11. Sonali Shukla McDermid & Matthew Hayek & Dale W. Jamieson & Galina Hale & David Kanter, 2023. "Research needs for a food system transition," Climatic Change, Springer, vol. 176(4), pages 1-15, April.
    12. Shinichiro Asayama & Mike Hulme & Nils Markusson, 2021. "Balancing a budget or running a deficit? The offset regime of carbon removal and solar geoengineering under a carbon budget," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    13. Singh, Vivek Kumar & Henriques, Carla Oliveira & Martins, António Gomes, 2018. "Fostering investment on energy efficient appliances in India–A multi-perspective economic input-output lifecycle assessment," Energy, Elsevier, vol. 149(C), pages 1022-1035.
    14. Rosa, Luiz Pinguelli & Schaeffer, Roberto, 1995. "Global warming potentials : The case of emissions from dams," Energy Policy, Elsevier, vol. 23(2), pages 149-158, February.
    15. Rautiainen, Aapo & Lintunen, Jussi, 2017. "Social Cost of Forcing: A Basis for Pricing All Forcing Agents," Ecological Economics, Elsevier, vol. 133(C), pages 42-51.
    16. Paulus, N., 2024. "Developing individual carbon footprint reduction pathways from carbon budgets: Examples with Wallonia and France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    17. Elizabeth Lindstad & Gunnar S. Eskeland & Agathe Rialland & Anders Valland, 2020. "Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    18. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2022. "Greenhouse Gas Emissions from Canadian Agriculture: Policies and Reduction Measures," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 15(13), May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5999-:d:892071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.