IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43452-3.html
   My bibliography  Save this article

Risk to rely on soil carbon sequestration to offset global ruminant emissions

Author

Listed:
  • Yue Wang

    (Wageningen University & Research)

  • Imke J. M. Boer

    (Wageningen University & Research)

  • U. Martin Persson

    (Chalmers University of Technology)

  • Raimon Ripoll-Bosch

    (Wageningen University & Research)

  • Christel Cederberg

    (Chalmers University of Technology)

  • Pierre J. Gerber

    (Wageningen University & Research
    The World Bank Group)

  • Pete Smith

    (University of Aberdeen)

  • Corina E. Middelaar

    (Wageningen University & Research)

Abstract

Carbon sequestration in grasslands has been proposed as an important means to offset greenhouse gas emissions from ruminant systems. To understand the potential and limitations of this strategy, we need to acknowledge that soil carbon sequestration is a time-limited benefit, and there are intrinsic differences between short- and long-lived greenhouse gases. Here, our analysis shows that one tonne of carbon sequestrated can offset radiative forcing of a continuous emission of 0.99 kg methane or 0.1 kg nitrous oxide per year over 100 years. About 135 gigatonnes of carbon is required to offset the continuous methane and nitrous oxide emissions from ruminant sector worldwide, nearly twice the current global carbon stock in managed grasslands. For various regions, grassland carbon stocks would need to increase by approximately 25% − 2,000%, indicating that solely relying on carbon sequestration in grasslands to offset warming effect of emissions from current ruminant systems is not feasible.

Suggested Citation

  • Yue Wang & Imke J. M. Boer & U. Martin Persson & Raimon Ripoll-Bosch & Christel Cederberg & Pierre J. Gerber & Pete Smith & Corina E. Middelaar, 2023. "Risk to rely on soil carbon sequestration to offset global ruminant emissions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43452-3
    DOI: 10.1038/s41467-023-43452-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43452-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43452-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanley, Paige L. & Rowntree, Jason E. & Beede, David K. & DeLonge, Marcia S. & Hamm, Michael W., 2018. "Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems," Agricultural Systems, Elsevier, vol. 162(C), pages 249-258.
    2. Myles R. Allen & Jan S. Fuglestvedt & Keith P. Shine & Andy Reisinger & Raymond T. Pierrehumbert & Piers M. Forster, 2016. "New use of global warming potentials to compare cumulative and short-lived climate pollutants," Nature Climate Change, Nature, vol. 6(8), pages 773-776, August.
    3. Jeffrey D. Sachs & Guido Schmidt-Traub & Mariana Mazzucato & Dirk Messner & Nebojsa Nakicenovic & Johan Rockström, 2019. "Six Transformations to achieve the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(9), pages 805-814, September.
    4. Jinfeng Chang & Philippe Ciais & Thomas Gasser & Pete Smith & Mario Herrero & Petr Havlík & Michael Obersteiner & Bertrand Guenet & Daniel S. Goll & Wei Li & Victoria Naipal & Shushi Peng & Chunjing Q, 2021. "Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. William J. Ripple & Pete Smith & Helmut Haberl & Stephen A. Montzka & Clive McAlpine & Douglas H. Boucher, 2014. "Ruminants, climate change and climate policy," Nature Climate Change, Nature, vol. 4(1), pages 2-5, January.
    6. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    7. Camila Bonilla-Cedrez & Peter Steward & Todd S. Rosenstock & Philip Thornton & Jacobo Arango & Martin Kropff & Julian Ramirez-Villegas, 2023. "Priority areas for investment in more sustainable and climate-resilient livestock systems," Nature Sustainability, Nature, vol. 6(10), pages 1279-1286, October.
    8. A. Parodi & A. Leip & I. J. M. Boer & P. M. Slegers & F. Ziegler & E. H. M. Temme & M. Herrero & H. Tuomisto & H. Valin & C. E. Middelaar & J. J. A. Loon & H. H. E. Zanten, 2018. "The potential of future foods for sustainable and healthy diets," Nature Sustainability, Nature, vol. 1(12), pages 782-789, December.
    9. Valentin Bellassen & Denis Angers & Tomasz Kowalczewski & Asger Olesen, 2022. "Soil carbon is the blind spot of European national GHG inventories," Nature Climate Change, Nature, vol. 12(4), pages 324-331, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    2. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    3. Vogel, Everton & Beber, Caetano Luiz, 2021. "Sustainable Intensification Strategies for GHG Mitigation Among Heterogeneous Dairy Farms in Paraná, Brazil," 2021 Conference, August 17-31, 2021, Virtual 315219, International Association of Agricultural Economists.
    4. Cécile M. Godde & Imke J. M. Boer & Erasmus zu Ermgassen & Mario Herrero & Corina E. Middelaar & Adrian Muller & Elin Röös & Christian Schader & Pete Smith & Hannah H. E. Zanten & Tara Garnett, 2020. "Soil carbon sequestration in grazing systems: managing expectations," Climatic Change, Springer, vol. 161(3), pages 385-391, August.
    5. Nicoletta Brazzola & Jan Wohland & Anthony Patt, 2021. "Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
    6. Martin C. Parlasca & Matin Qaim, 2022. "Meat Consumption and Sustainability," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 17-41, October.
    7. Elias Ganivet, 2020. "Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 4979-4998, August.
    8. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    9. Sonika Redhu & Pragati Jain, 2024. "Unveiling the nexus between water scarcity and socioeconomic development in the water-scarce countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19557-19577, August.
    10. Keeheon Lee, 2021. "A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    11. Paul Fesenfeld, Lukas & Maier, Maiken & Brazzola, Nicoletta & Stolz, Niklas & Sun, Yixian & Kachi, Aya, 2023. "How information, social norms, and experience with novel meat substitutes can create positive political feedback and demand-side policy change," Food Policy, Elsevier, vol. 117(C).
    12. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    13. Oliver Reader, M. & Eppinga, Maarten B. & de Boer, Hugo J. & Petchey, Owen L. & Santos, Maria J., 2024. "Consistent ecosystem service bundles emerge across global mountain, island and delta systems," Ecosystem Services, Elsevier, vol. 66(C).
    14. Björnemalm, Rickard & Sandström, Christian & Åkesson, Nelly, 2023. "A Public Choice Perspective on Mission-Oriented Innovation Policies and the Behavior of Government Agencies," Ratio Working Papers 366, The Ratio Institute.
    15. Puertas, Rosa & Guaita-Martinez, José M. & Marti, Luisa, 2023. "Analysis of the impact of university policies on society's environmental perception," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    16. Amin Jan & Mário Nuno Mata & Pia A. Albinsson & José Moleiro Martins & Rusni Bt Hassan & Pedro Neves Mata, 2021. "Alignment of Islamic Banking Sustainability Indicators with Sustainable Development Goals: Policy Recommendations for Addressing the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(5), pages 1-38, March.
    17. Koundouri, Phoebe & Theodossiou, Nicolaos & Stavridis, Charalampos & Devves, Stathis & Plataniotis, Angelos, 2022. "A methodology for linking the Energy-related Policies of the European Green Deal to the 17 SDGs using Machine Learning," MPRA Paper 122118, University Library of Munich, Germany.
    18. Lejla Terzić, 2024. "An investigation of the interlinkages between green growth dimensions, the energy trilemma, and sustainable development goals: Evidence from G7 and E7 economies," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 1, pages 24-53.
    19. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    20. Iban, Muzaffer Can & Aksu, Oktay, 2020. "A model for big spatial rural data infrastructure in Turkey: Sensor-driven and integrative approach," Land Use Policy, Elsevier, vol. 91(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43452-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.