IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5899-d888085.html
   My bibliography  Save this article

Numerical Simulation of Ventilation Performance in Mushroom Solar Greenhouse Design

Author

Listed:
  • Yiming Li

    (College of Engineering, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Modern Facility Horticulture Engineering Technology Center (Shenyang Agricultural University), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China)

  • Fujun Sun

    (College of Engineering, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China)

  • Wenbin Shi

    (National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Modern Facility Horticulture Engineering Technology Center (Shenyang Agricultural University), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China)

  • Xingan Liu

    (National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Modern Facility Horticulture Engineering Technology Center (Shenyang Agricultural University), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China)

  • Tianlai Li

    (National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Modern Facility Horticulture Engineering Technology Center (Shenyang Agricultural University), No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China
    College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China)

Abstract

Numerical simulation is an effective tool for the thermal management of propulsion systems. Moreover, it contributes to the design and performance assessment of solar greenhouses for mushroom ventilation. Because the planning and design of the clustered solar greenhouse are still undiscovered, this study has developed a 3-D mathematical model suitable for a large-scale park of mushroom solar greenhouses based on computational fluid dynamics (CFD) theory. The effects of the orientation arrangement, horizontal spacing, vertical spacing of the cultivation racks, and the building distance between adjacent greenhouses on the ventilation performance were analyzed. The numerical simulation showed good agreement with the experimental measurement. The CFD results indicated that the reasonable layout of cultivation racks in mushroom solar greenhouses is a north-south arrangement. The horizontal spacing of cultivation racks has a significant influence on the wind speed and cooling rate, and the optimal spacing is 0.8 m. The overall height of the cultivation racks has little effect on the ventilation performance. Nevertheless, the vertical spacing between cultivation rack layers has a remarkable effect, and the optimal vertical spacing is 0.29 m. Reducing the building distance between the two adjacent greenhouses within a certain range helps increase the ventilation efficiency, leading to an increase in land utilization in the greenhouse park. The optimal building distance between the adjacent greenhouses is 10 m. The research results can provide theoretical guidance for improving the production quality and land utilization of mushroom facilities.

Suggested Citation

  • Yiming Li & Fujun Sun & Wenbin Shi & Xingan Liu & Tianlai Li, 2022. "Numerical Simulation of Ventilation Performance in Mushroom Solar Greenhouse Design," Energies, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5899-:d:888085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    2. Nebbali, R. & Roy, J.C. & Boulard, T., 2012. "Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse," Renewable Energy, Elsevier, vol. 43(C), pages 111-129.
    3. Chan Kyu Lee & Mo Chung & Ki-Yeol Shin & Yong-Hoon Im & Si-Won Yoon, 2019. "A Study of the Effects of Enhanced Uniformity Control of Greenhouse Environment Variables on Crop Growth," Energies, MDPI, vol. 12(9), pages 1-24, May.
    4. Chen, Zhanxiu & Zheng, Dan & Wang, Jin & Chen, Lei & Sundén, Bengt, 2020. "Experimental investigation on heat transfer characteristics of various nanofluids in an indoor electric heater," Renewable Energy, Elsevier, vol. 147(P1), pages 1011-1018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Guan & Yan Chen & Lu Zhou & Zhixiong Wei & Wanling Hu & Yuchao Yang, 2024. "The Thermal Properties of an Active–Passive Heat Storage Wall System Incorporating Phase Change Materials in a Chinese Solar Greenhouse," Sustainability, MDPI, vol. 16(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zilong Fan & Yiming Li & Lingling Jiang & Lu Wang & Tianlai Li & Xingan Liu, 2023. "Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    2. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).
    3. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    4. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    5. Wang, XiaoLong & Sun, GuoChen & Zhang, LinHua & Lei, WenJun & Zhang, WenKe & Li, HaoYi & Zhang, ChunYue & Guo, JingChenxi, 2023. "Application of green energy in smart rural passive heating: A case study of indoor temperature self-regulating greenhouse of winter in Jinan, China," Energy, Elsevier, vol. 278(C).
    6. Peng Liu & Wei Liu & Kexin Gong & Chengjun Han & Hong Zhang & Zhucheng Sui & Renguo Hu, 2022. "Numerical Study on Particulate Fouling Characteristics of Flue with a Particulate Fouling Model Considering Deposition and Removal Mechanisms," Energies, MDPI, vol. 15(22), pages 1-22, November.
    7. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    8. Xia, Tianyang & Li, Yiming & Sun, Zhouping & Wan, Xiuchao & Sun, Dapeng & Wang, Lu & Liu, Xingan & Li, Tianlai, 2023. "Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions," Applied Energy, Elsevier, vol. 332(C).
    9. Serkan Erdem & Cenk Onan, 2024. "Investigation of Chinese-Style Greenhouse Usage Across Europe," Energies, MDPI, vol. 17(21), pages 1-15, October.
    10. Hicham Fatnassi & Thierry Boulard & Christine Poncet & Nikolaos Katsoulas & Thomas Bartzanas & Murat Kacira & Habtamu Giday & In-Bok Lee, 2021. "Computational Fluid Dynamics Modelling of the Microclimate within the Boundary Layer of Leaves Leading to Improved Pest Control Management and Low-Input Greenhouse," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    11. Mingzhi Zhao & Yingjie Liu & Daorina Bao & Xiaoming Hu & Ningbo Wang & Lei Liu, 2023. "Study on the Influence of Solar Array Tube on Thermal Environment of Greenhouse," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    12. Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
    13. María S. Fernández-García & Pablo Vidal-López & Desirée Rodríguez-Robles & José R. Villar-García & Rafael Agujetas, 2020. "Numerical Simulation of Multi-Span Greenhouse Structures," Agriculture, MDPI, vol. 10(11), pages 1-31, October.
    14. Bouadila, Salwa & Baddadi, Sara & Skouri, Safa & Ayed, Rabeb, 2022. "Assessing heating and cooling needs of hydroponic sheltered system in mediterranean climate: A case study sustainable fodder production," Energy, Elsevier, vol. 261(PB).
    15. Zhiming Qiao & Hongjun Xiang & Genrong Cao & Zhibo Qiao & Qing’ao Lv & Xichao Yuan & Lei Chen, 2022. "Simulation Analysis of Emptying the Explosives in Projectiles with Electromagnetic Heating," Energies, MDPI, vol. 16(1), pages 1-12, December.
    16. Guan, Yong & Meng, Qi & Ji, Tianxu & Hu, Wanling & Li, Wenlong & Liu, Tianming, 2023. "Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse," Energy, Elsevier, vol. 264(C).
    17. Xia, Tianyang & He, Ming & Li, Yiming & Sun, Dapeng & Sun, Zhouping & Liu, Xingan & Li, Tianlai, 2024. "New design concept and thermal performance of a composite wall applied in solar greenhouse," Energy, Elsevier, vol. 300(C).
    18. Germán Díaz-Flórez & Jorge Mendiola-Santibañez & Luis Solís-Sánchez & Domingo Gómez-Meléndez & Ivan Terol-Villalobos & Hector Gutiérrez-Bañuelos & Ma. Araiza-Esquivel & Gustavo Espinoza-García & Juan , 2019. "Modeling and Simulation of Temperature and Relative Humidity Inside a Growth Chamber," Energies, MDPI, vol. 12(21), pages 1-22, October.
    19. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
    20. Li, Yiming & Yan, Jun & Li, Zongze & He, Ming & Liu, Xingan & Li, Tianlai, 2024. "A globalized methodology of energy-saving solar greenhouse design in high latitudes," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5899-:d:888085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.