IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics036054422300587x.html
   My bibliography  Save this article

A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance

Author

Listed:
  • Wu, Xiaoyang
  • Li, Yiming
  • Jiang, Lingling
  • Wang, Yang
  • Liu, Xingan
  • Li, Tianlai

Abstract

The existing Chinese solar greenhouse (CSG) had different spatial structure types, which spatial structure can make the greenhouse fully utilize solar energy and obtain the best thermal performance effect is worthy of further research. This paper took the CSG in the Shenyang area as the research object. A mathematical model was established to simulate the three-dimensional dynamic thermal environment of CSG at the crop level by combining experimental and computational fluid dynamics (CFD) numerical simulation. The model can well describe the heat transfer process in the greenhouse. Based on this model, the effects of variation of multiple structural parameters on the temperature distribution, solar energy interception, heat storage and release performance of CSG were quantitatively specified. The simulation results demonstrated that for the CSG with a span of 10 m in the Shenyang area, the optimal ridge height was 6.2 m, the optimal north wall height was 4.4 m and the optimal horizontal projection length of the north roof was 2.0 m. Furthermore, the spatial structure parameters of CSG with an 8 m–12 m span were obtained for the Shenyang area. This paper can provide theoretical guidance for the design and optimization of spatial structure parameters of CSG in the Shenyang area.

Suggested Citation

  • Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s036054422300587x
    DOI: 10.1016/j.energy.2023.127193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300587X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esmaeli, Homa & Roshandel, Ramin, 2020. "Optimal design for solar greenhouses based on climate conditions," Renewable Energy, Elsevier, vol. 145(C), pages 1255-1265.
    2. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    3. Abdel-Ghany, A.M. & Al-Helal, I.M., 2011. "Solar energy utilization by a greenhouse: General relations," Renewable Energy, Elsevier, vol. 36(1), pages 189-196.
    4. Hicham Fatnassi & Thierry Boulard & Christine Poncet & Nikolaos Katsoulas & Thomas Bartzanas & Murat Kacira & Habtamu Giday & In-Bok Lee, 2021. "Computational Fluid Dynamics Modelling of the Microclimate within the Boundary Layer of Leaves Leading to Improved Pest Control Management and Low-Input Greenhouse," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    5. Tong, Guohong & Christopher, David M. & Li, Tianlai & Wang, Tieliang, 2013. "Passive solar energy utilization: A review of cross-section building parameter selection for Chinese solar greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 540-548.
    6. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    7. Misra, Rohit & Bansal, Vikas & Agrawal, Ghanshyam Das & Mathur, Jyotirmay & Aseri, Tarun K., 2013. "CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger," Applied Energy, Elsevier, vol. 103(C), pages 266-277.
    8. Singh, R.D. & Tiwari, G.N., 2010. "Energy conservation in the greenhouse system: A steady state analysis," Energy, Elsevier, vol. 35(6), pages 2367-2373.
    9. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Wu, Gang & Yang, Qichang & Zhang, Yi & Fang, Hui & Feng, Chaoqing & Zheng, Hongfei, 2020. "Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse," Energy, Elsevier, vol. 197(C).
    11. He, Xueying & Wang, Pingzhi & Song, Weitang & Wu, Gang & Ma, Chengwei & Li, Ming, 2022. "Experimental study on the feasibility and thermal performance of a multifunctional air conditioning system using surplus air thermal energy to heat a Chinese solar greenhouse," Renewable Energy, Elsevier, vol. 198(C), pages 1148-1161.
    12. Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Solar greenhouse an option for renewable and sustainable farming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3934-3945.
    14. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    15. Gupta, Mathala J & Chandra, Pitam, 2002. "Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control," Energy, Elsevier, vol. 27(8), pages 777-794.
    16. Xu, Weiwei & Guo, Huiqing & Ma, Chengwei, 2022. "An active solar water wall for passive solar greenhouse heating," Applied Energy, Elsevier, vol. 308(C).
    17. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    18. Mobtaker, Hassan Ghasemi & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2019. "Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation," Renewable Energy, Elsevier, vol. 135(C), pages 88-97.
    19. Djevic, M. & Dimitrijevic, A., 2009. "Energy consumption for different greenhouse constructions," Energy, Elsevier, vol. 34(9), pages 1325-1331.
    20. Nebbali, R. & Roy, J.C. & Boulard, T., 2012. "Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse," Renewable Energy, Elsevier, vol. 43(C), pages 111-129.
    21. Saberian, Ayad & Sajadiye, Seyed Majid, 2019. "The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation," Renewable Energy, Elsevier, vol. 138(C), pages 722-737.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Tianyang & He, Ming & Li, Yiming & Sun, Dapeng & Sun, Zhouping & Liu, Xingan & Li, Tianlai, 2024. "New design concept and thermal performance of a composite wall applied in solar greenhouse," Energy, Elsevier, vol. 300(C).
    2. Weiwei Cheng & Yu Wang & Changchao Wang & Zhonghua Liu, 2024. "The Marginal Effect and LSTM Prediction Model under the Chinese Solar Greenhouse Film," Agriculture, MDPI, vol. 14(7), pages 1-25, July.
    3. Ming Yuan & Zilin Zhang & Gangao Li & Xiuhan He & Zongbao Huang & Zhiwei Li & Huiling Du, 2024. "Multi-Parameter Prediction of Solar Greenhouse Environment Based on Multi-Source Data Fusion and Deep Learning," Agriculture, MDPI, vol. 14(8), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Tianyang & Li, Yiming & Sun, Zhouping & Wan, Xiuchao & Sun, Dapeng & Wang, Lu & Liu, Xingan & Li, Tianlai, 2023. "Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions," Applied Energy, Elsevier, vol. 332(C).
    2. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    3. He, Xueying & Wang, Pingzhi & Song, Weitang & Wu, Gang & Ma, Chengwei & Li, Ming, 2022. "Experimental study on the feasibility and thermal performance of a multifunctional air conditioning system using surplus air thermal energy to heat a Chinese solar greenhouse," Renewable Energy, Elsevier, vol. 198(C), pages 1148-1161.
    4. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    5. Xia, Tianyang & He, Ming & Li, Yiming & Sun, Dapeng & Sun, Zhouping & Liu, Xingan & Li, Tianlai, 2024. "New design concept and thermal performance of a composite wall applied in solar greenhouse," Energy, Elsevier, vol. 300(C).
    6. Gauravkumar Gadhesaria & Chinmay Desai & Ravi Bhatt & Bashir Salah, 2020. "Thermal Analysis and Experimental Validation of Environmental Condition Inside Greenhouse in Tropical Wet and Dry Climate," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    7. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    8. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    9. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Mobtaker, Hassan Ghasemi & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2019. "Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation," Renewable Energy, Elsevier, vol. 135(C), pages 88-97.
    11. Zhang, Yue & Henke, Michael & Li, Yiming & Yue, Xiang & Xu, Demin & Liu, Xingan & Li, Tianlai, 2020. "High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure," Renewable Energy, Elsevier, vol. 160(C), pages 730-745.
    12. Chang, Zehui & Liu, Xuedong & Guo, Ziheng & Hou, Jing & Su, Yuehong, 2024. "A novel integration of supplementary photovoltaic module into compound parabolic concentrator for accelerated defrosting of solar collecting system," Renewable Energy, Elsevier, vol. 225(C).
    13. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    14. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    16. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    17. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    18. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    19. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    20. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s036054422300587x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.