IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3127-d1062297.html
   My bibliography  Save this article

Study on the Influence of Solar Array Tube on Thermal Environment of Greenhouse

Author

Listed:
  • Mingzhi Zhao

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Yingjie Liu

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Daorina Bao

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Xiaoming Hu

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Ningbo Wang

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Lei Liu

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

Abstract

The stratum and microenvironment temperatures in a greenhouse are important factors that affect crop yield. In order to solve the problem of temperature imbalance caused by solar radiation in greenhouses, this paper proposes the application of a solar radiation array tube in a greenhouse. By adding water or phase change materials to the array tube, the influence of the array tube on the formation and microenvironment temperature changes was studied, and a 10-day test was carried out. A test group and control group were set up to monitor test results, and the ground was divided into six areas. The depths of each area were 10 cm, 30 cm, and 50 cm, and the heights of the greenhouse centers were 0 cm, 30 cm, 60 cm, 90 cm, 120 cm, 150 cm, and 180 cm. Via an analysis of the test results obtained for the formation and microenvironment temperature, the arrangement of the array tube was found to exert a constant temperature regulation effect on the microenvironment of the greenhouse at a formation depth of 10 cm and was able to improve this formation depth to a certain extent. The temperature at 30 cm and 50 cm plays a positive role in building a good vegetation growth environment.

Suggested Citation

  • Mingzhi Zhao & Yingjie Liu & Daorina Bao & Xiaoming Hu & Ningbo Wang & Lei Liu, 2023. "Study on the Influence of Solar Array Tube on Thermal Environment of Greenhouse," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3127-:d:1062297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Misbaudeen Aderemi Adesanya & Wook-Ho Na & Anis Rabiu & Qazeem Opeyemi Ogunlowo & Timothy Denen Akpenpuun & Adnan Rasheed & Yong-Cheol Yoon & Hyun-Woo Lee, 2022. "TRNSYS Simulation and Experimental Validation of Internal Temperature and Heating Demand in a Glass Greenhouse," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    2. Tavakolpour-Saleh, A.R. & Hamzavi, A. & Omidvar, A., 2021. "A novel solar-powered self-blowing air heating system with active control based on a quasi-Stirling cycle," Energy, Elsevier, vol. 227(C).
    3. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    4. Xu, Weiwei & Guo, Huiqing & Ma, Chengwei, 2022. "An active solar water wall for passive solar greenhouse heating," Applied Energy, Elsevier, vol. 308(C).
    5. Javier Orozco-Messana & Vicente Lopez-Mateu & Teresa M. Pellicer, 2022. "City Regeneration through Modular Phase Change Materials (PCM) Envelopes for Climate Neutral Buildings," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Tianyang & Li, Yiming & Sun, Zhouping & Wan, Xiuchao & Sun, Dapeng & Wang, Lu & Liu, Xingan & Li, Tianlai, 2023. "Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions," Applied Energy, Elsevier, vol. 332(C).
    2. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).
    3. Xia, Tianyang & He, Ming & Li, Yiming & Sun, Dapeng & Sun, Zhouping & Liu, Xingan & Li, Tianlai, 2024. "New design concept and thermal performance of a composite wall applied in solar greenhouse," Energy, Elsevier, vol. 300(C).
    4. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    5. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    6. Wang, XiaoLong & Sun, GuoChen & Zhang, LinHua & Lei, WenJun & Zhang, WenKe & Li, HaoYi & Zhang, ChunYue & Guo, JingChenxi, 2023. "Application of green energy in smart rural passive heating: A case study of indoor temperature self-regulating greenhouse of winter in Jinan, China," Energy, Elsevier, vol. 278(C).
    7. Zilong Fan & Yiming Li & Lingling Jiang & Lu Wang & Tianlai Li & Xingan Liu, 2023. "Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    8. Chen, Xinge & Liang, Hao & Wu, Gang & Feng, Chaoqing & Tao, Tao & Ji, Yaning & Ma, Qianlei & Tong, Yuxin, 2023. "Coupled heat and humidity control system of narrow-trough solar collector and solid desiccant in Chinese solar greenhouse: Analysis of optical / thermal characteristics and experimental study," Energy, Elsevier, vol. 273(C).
    9. Rabiu, Anis & Adesanya, Misbaudeen Aderemi & Na, Wook-Ho & Ogunlowo, Qazeem O. & Akpenpuun, Timothy D. & Kim, Hyeon Tae & Lee, Hyun-Woo, 2023. "Thermal performance and energy cost of Korean multispan greenhouse energy-saving screens," Energy, Elsevier, vol. 285(C).
    10. Bouadila, Salwa & Baddadi, Sara & Skouri, Safa & Ayed, Rabeb, 2022. "Assessing heating and cooling needs of hydroponic sheltered system in mediterranean climate: A case study sustainable fodder production," Energy, Elsevier, vol. 261(PB).
    11. Daniel Castro Medina & MCarmen Guerrero Delgado & Teresa Rocío Palomo Amores & Aurore Toulou & Jose Sánchez Ramos & Servando Álvarez Domínguez, 2022. "Climatic Control of Urban Spaces Using Natural Cooling Techniques to Achieve Outdoor Thermal Comfort," Sustainability, MDPI, vol. 14(21), pages 1-33, October.
    12. Guan, Yong & Meng, Qi & Ji, Tianxu & Hu, Wanling & Li, Wenlong & Liu, Tianming, 2023. "Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse," Energy, Elsevier, vol. 264(C).
    13. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    14. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    15. Sajjad Ali Rao & Poonam Singh, 2024. "Passive Solar Greenhouse-A Sustainable Option for Propagating Sweet Potato for Colder Climatic Regions," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 13(1), pages 1-50, April.
    16. Mattia De Rosa & Vincenzo Bianco & Henrik Barth & Patricia Pereira da Silva & Carlos Vargas Salgado & Fabiano Pallonetto, 2023. "Technologies and Strategies to Support Energy Transition in Urban Building and Transportation Sectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    17. He, Xueying & Wang, Pingzhi & Song, Weitang & Wu, Gang & Ma, Chengwei & Li, Ming, 2022. "Experimental study on the feasibility and thermal performance of a multifunctional air conditioning system using surplus air thermal energy to heat a Chinese solar greenhouse," Renewable Energy, Elsevier, vol. 198(C), pages 1148-1161.
    18. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Wall Technology and Its Impact on Building Performance," Energies, MDPI, vol. 17(5), pages 1-36, February.
    19. Yiming Li & Fujun Sun & Wenbin Shi & Xingan Liu & Tianlai Li, 2022. "Numerical Simulation of Ventilation Performance in Mushroom Solar Greenhouse Design," Energies, MDPI, vol. 15(16), pages 1-18, August.
    20. Chang, Zehui & Liu, Xuedong & Guo, Ziheng & Hou, Jing & Su, Yuehong, 2024. "A novel integration of supplementary photovoltaic module into compound parabolic concentrator for accelerated defrosting of solar collecting system," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3127-:d:1062297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.