IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i5p3326-3338.html
   My bibliography  Save this article

National geodatabase of tidal stream power resource in USA

Author

Listed:
  • Defne, Zafer
  • Haas, Kevin A.
  • Fritz, Hermann M.
  • Jiang, Lide
  • French, Steven P.
  • Shi, Xuan
  • Smith, Brennan T.
  • Neary, Vincent S.
  • Stewart, Kevin M.

Abstract

A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500W/m2 (corresponding to a current speed of ∼1m/s), total surface area larger than 0.5km2 and depth greater than 5m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

Suggested Citation

  • Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M. & Jiang, Lide & French, Steven P. & Shi, Xuan & Smith, Brennan T. & Neary, Vincent S. & Stewart, Kevin M., 2012. "National geodatabase of tidal stream power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3326-3338.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3326-3338
    DOI: 10.1016/j.rser.2012.02.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112001554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.02.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA," Renewable Energy, Elsevier, vol. 36(12), pages 3461-3471.
    2. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    3. Lee, M.Q. & Lu, C.N. & Huang, H.S., 2009. "Reliability and cost analyses of electricity collection systems of a marine current farm--A Taiwanese case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2012-2021, October.
    4. Myers, L. & Bahaj, A.S., 2005. "Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race," Renewable Energy, Elsevier, vol. 30(11), pages 1713-1731.
    5. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    6. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    7. Lim, Yun Seng & Koh, Siong Lee, 2010. "Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 35(5), pages 1024-1032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, H.S. & Qu, K. & Chen, G.Q. & Kraatz, S. & Aboobaker, N. & Jiang, C.B., 2014. "Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 412-425.
    2. Gunawan, Budi & Neary, Vincent S. & Colby, Jonathan, 2014. "Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York," Renewable Energy, Elsevier, vol. 71(C), pages 509-517.
    3. Thiébaut, Maxime & Quillien, Nolwenn & Maison, Antoine & Gaborieau, Herveline & Ruiz, Nicolas & MacKenzie, Seumas & Connor, Gary & Filipot, Jean-François, 2022. "Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary," Renewable Energy, Elsevier, vol. 195(C), pages 252-262.
    4. Cowles, Geoffrey W. & Hakim, Aradea R. & Churchill, James H., 2017. "A comparison of numerical and analytical predictions of the tidal stream power resource of Massachusetts, USA," Renewable Energy, Elsevier, vol. 114(PA), pages 215-228.
    5. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Chen, Shuo & Jiang, Boxi & Li, Xiaofan & Huang, Jianuo & Wu, Xian & Xiong, Qiuchi & Parker, Robert G. & Zuo, Lei, 2022. "Design, dynamic modeling and wave basin verification of a Hybrid Wave–Current Energy Converter," Applied Energy, Elsevier, vol. 321(C).
    7. Yang, Xiufeng & Haas, Kevin A. & Fritz, Hermann M. & French, Steven P. & Shi, Xuan & Neary, Vincent S. & Gunawan, Budi, 2015. "National geodatabase of ocean current power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 496-507.
    8. Liu, Xiaodong & Chen, Zheng & Si, Yulin & Qian, Peng & Wu, He & Cui, Lin & Zhang, Dahai, 2021. "A review of tidal current energy resource assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Yang, Zhaoqing & Wang, Taiping & Branch, Ruth & Xiao, Ziyu & Deb, Mithun, 2021. "Tidal stream energy resource characterization in the Salish Sea," Renewable Energy, Elsevier, vol. 172(C), pages 188-208.
    10. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    11. Guillou, Nicolas & Neill, Simon P. & Robins, Peter E., 2018. "Characterising the tidal stream power resource around France using a high-resolution harmonic database," Renewable Energy, Elsevier, vol. 123(C), pages 706-718.
    12. Xu, Tongtong & Haas, Kevin A. & Gunawan, Budi, 2023. "Estimating annual energy production from short tidal current records," Renewable Energy, Elsevier, vol. 207(C), pages 105-115.
    13. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    14. Tang, H.S. & Kraatz, S. & Qu, K. & Chen, G.Q. & Aboobaker, N. & Jiang, C.B., 2014. "High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 960-982.
    15. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    16. Deb, Mithun & Yang, Zhaoqing & Wang, Taiping & Kilcher, Levi, 2023. "Turbulence modeling to aid tidal energy resource characterization in the Western Passage, Maine, USA," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    2. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    3. Tang, H.S. & Qu, K. & Chen, G.Q. & Kraatz, S. & Aboobaker, N. & Jiang, C.B., 2014. "Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 412-425.
    4. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).
    5. Sangiuliano, Stephen Joseph, 2017. "Turning of the tides: Assessing the international implementation of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 971-989.
    6. Work, Paul A. & Haas, Kevin A. & Defne, Zafer & Gay, Thomas, 2013. "Tidal stream energy site assessment via three-dimensional model and measurements," Applied Energy, Elsevier, vol. 102(C), pages 510-519.
    7. Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.
    8. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.
    9. Plew, David R. & Stevens, Craig L., 2013. "Numerical modelling of the effect of turbines on currents in a tidal channel – Tory Channel, New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 269-282.
    10. Thiébot, Jérôme & Bailly du Bois, Pascal & Guillou, Sylvain, 2015. "Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport – Application to the Alderney Race (Raz Blanchard), France," Renewable Energy, Elsevier, vol. 75(C), pages 356-365.
    11. Farajzadeh, Ehsan & Movahed, Saeid & Hosseini, Reza, 2018. "Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector," Renewable Energy, Elsevier, vol. 118(C), pages 122-130.
    12. Kirinus, Eduardo de Paula & Oleinik, Phelype Haron & Costi, Juliana & Marques, Wiliam Correa, 2018. "Long-term simulations for ocean energy off the Brazilian coast," Energy, Elsevier, vol. 163(C), pages 364-382.
    13. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    14. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    15. Tang, H.S. & Kraatz, S. & Qu, K. & Chen, G.Q. & Aboobaker, N. & Jiang, C.B., 2014. "High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 960-982.
    16. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.
    17. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    18. Cowles, Geoffrey W. & Hakim, Aradea R. & Churchill, James H., 2017. "A comparison of numerical and analytical predictions of the tidal stream power resource of Massachusetts, USA," Renewable Energy, Elsevier, vol. 114(PA), pages 215-228.
    19. Deb, Mithun & Yang, Zhaoqing & Haas, Kevin & Wang, Taiping, 2024. "Hydrokinetic tidal energy resource assessment following international electrotechnical commission guidelines," Renewable Energy, Elsevier, vol. 229(C).
    20. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3326-3338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.