IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5735-d882393.html
   My bibliography  Save this article

Power Management of a Plug-in Hybrid Electric Vehicle Using Neural Networks with Comparison to Other Approaches

Author

Listed:
  • Da Huo

    (Illinois Institute of Technology, 10 W 35th St, Chicago, IL 60616, USA)

  • Peter Meckl

    (School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA)

Abstract

Many researchers spent much effort on the online power management strategies for plug-in hybrid vehicles (PHEVs) and hybrid electric vehicles (HEVs). Nowadays, artificial neural networks (ANNs), one of the machine learning techniques, have also been applied to this problem due to their good performance in learning non-linear and complicated multi-inputs multi-outputs (MIMO) dynamic systems. In this paper, an ANN is applied to the online power management for a plug-in hybrid electric vehicle (PHEV) by predicting the torque split between an internal combustion engine (ICE) and an electric motor (e-Motor) to optimize the greenhouse gas ( G H G ) emissions by using dynamic programming (DP) results as training data. Dynamic programming can achieve a global minimum solution while it is computationally intensive and requires prior knowledge of the entire drive cycle. As such, this method cannot be implemented in real-time. The DP-based ANN controller can get the benefit of using an ANN to fit the DP solution so that it can be implemented in real-time for an arbitrary drive cycle. We studied the hyper-parameters’ effects on the ANN model and different structures of ANN models are compared. The minimum training mean square error (MSE) models in each comparison set are selected for comparison with DP and equivalent consumption minimization strategy (ECMS). The total G H G emissions and state of charge ( S O C ) are the metrics used for the analysis and comparison. All the selected ANNs provide results that are comparable to the optimal DP solution, which indicates that ANNs are almost as good as the DP solution. It is found that the multiple hidden-layer ANN shows more efficiency in the training process than the single hidden-layer ANN. By comparing the results with ECMS, the ANN shows great potential in real-time application with the smallest deviation from the results of DP. In addition, our approach does not require any additional trip information, and its output (torque split) is more directly implementable on real vehicles.

Suggested Citation

  • Da Huo & Peter Meckl, 2022. "Power Management of a Plug-in Hybrid Electric Vehicle Using Neural Networks with Comparison to Other Approaches," Energies, MDPI, vol. 15(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5735-:d:882393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jen-Chiun Guan & Bo-Chiuan Chen & Yuh-Yih Wu, 2019. "Design of an Adaptive Power Management Strategy for Range Extended Electric Vehicles," Energies, MDPI, vol. 12(9), pages 1-24, April.
    2. Naoui Mohamed & Flah Aymen & Ziad M. Ali & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    3. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    4. Yang, Yalian & Pei, Huanxin & Hu, Xiaosong & Liu, Yonggang & Hou, Cong & Cao, Dongpu, 2019. "Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach," Energy, Elsevier, vol. 166(C), pages 929-938.
    5. Yuping Zeng & Yang Cai & Guiyue Kou & Wei Gao & Datong Qin, 2018. "Energy Management for Plug-In Hybrid Electric Vehicle Based on Adaptive Simplified-ECMS," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    6. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    7. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Qicheng Xue & Xin Zhang & Teng Teng & Jibao Zhang & Zhiyuan Feng & Qinyang Lv, 2020. "A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-30, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luiz Carlos Gomes Freitas & Marcelo Godoy Simoes & Paulo Peixoto Praça, 2023. "Power Electronics Converters for On-Board Electric Power Systems," Energies, MDPI, vol. 16(9), pages 1-2, April.
    2. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part I: Modeling and solution algorithm design," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 174-198.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    2. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    4. Zhang, Fengqi & Xiao, Lehua & Coskun, Serdar & Pang, Hui & Xie, Shaobo & Liu, Kailong & Cui, Yahui, 2023. "Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing," Energy, Elsevier, vol. 264(C).
    5. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Robert J.R. Elliott & Viet Nguyen-Tien & Eric Strobl & Chengyu Zhang, 2024. "Estimating the longevity of electric vehicles: What do 300 million MOT test results tell us?," CEP Discussion Papers dp1972, Centre for Economic Performance, LSE.
    7. Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2021. "Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon," Energies, MDPI, vol. 14(12), pages 1-11, June.
    8. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    9. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    10. Jacobus Nel & Roula Inglesi-Lotz, 2022. "Electric Vehicles Market and Policy Conditions: Identifying South African Policy ``Potholes"," Working Papers 202257, University of Pretoria, Department of Economics.
    11. Hyoung Jun Kim & Su Jung Jee & So Young Sohn, 2021. "Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
    12. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    13. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    14. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    15. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    16. Yanhua Liang & Hongjuan Lu, 2022. "Dynamic Evaluation and Regional Differences Analysis of the NEV Industry Development in China," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    17. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    18. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    19. Yavuz Eray Altun & Osman Akın Kutlar, 2024. "Energy Management Systems’ Modeling and Optimization in Hybrid Electric Vehicles," Energies, MDPI, vol. 17(7), pages 1-39, April.
    20. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5735-:d:882393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.