IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5486-d874729.html
   My bibliography  Save this article

Hydrogen Production and Storage: Analysing Integration of Photoelectrolysis, Electron Harvesting Lignocellulose, and Atmospheric Carbon Dioxide-Fixing Biosynthesis

Author

Listed:
  • Jhuma Sadhukhan

    (Centre for Environment and Sustainability, University of Surrey, Guildford GU2 7XH, UK)

  • Bruno G. Pollet

    (Green Hydrogen Lab (GH2Lab), Pollet Research Group, Institute for Hydrogen Research, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada)

  • Miles Seaman

    (Independent Adviser, 38 Sarre Road, London NW2 3SL, UK)

Abstract

Green hydrogen from photocatalytic water-splitting and photocatalytic lignocellulosic reforming is a significant proposition for renewable energy storage in global net-zero policies and strategies. Although photocatalytic water-splitting and photocatalytic lignocellulosic reforming have been investigated, their integration is novel. Furthermore, biosynthesis can store the evolved hydrogen and fix the atmospheric carbon dioxide in a biocathode chamber. The biocathode chamber is coupled to the combined photocatalytic water-splitting and lignocellulose oxidation in an anode chamber. This integrated system of anode and biocathode mimics a (bio)electrosynthesis system. A visible solar radiation-driven novel hybrid system comprising photocatalytic water-splitting, lignocellulose oxidation, and atmospheric CO 2 fixation is, thus, investigated. It must be noted that there is no technology for reducing atmospheric CO 2 concentration. Thus, our novel intensified technology enables renewable and sustainable hydrogen economy and direct CO 2 capture from air to confront climate change impact. The photocatalytic anode considered is CdS nanocomposites that give a low absorption onset (200 nm), high absorbance range (200–800 nm), and narrow bandgap (1.58–2.4 V). The biocathode considered is Ralstonia eutropha H16 interfaced with photocatalytic lignocellulosic oxidation and a water-splitting anode. The biocathode undergoes autotrophic metabolism fixing atmospheric CO 2 and hydrogen to poly(3-hydroxybutyrate) biosynthesis. As the hydrogen evolved can be readily stored, the electron–hole pair can be separated, increasing the hydrogen evolution efficiency. Although there are many experimental studies, this study for the first time sets the maximum theoretical efficiency target from mechanistic deductions of practical insights. Compared to physical/physicochemical absorption with solvent recovery to capture CO 2 , the photosynthetic CO 2 capture efficiency is 51%. The maximum solar-to-hydrogen generation efficiency is 33%. Lignocelluloses participate in hydrogen evolution by (1–4)-glycosidic bond decomposition, releasing accessible sugar monomers or monosaccharides forming a Cd–O–R bond with the CdS/CdO x nanocomposite surface used as a photocatalyst/semiconductor, leading to C O 3 2 − in oxidised carboxylic acid products. Lignocellulose dosing as an oxidising agent can increase the extent of water-splitting. The mechanistic analyses affirm the criticality of lignocellulose oxidation in photocatalytic hydrogen evolution. The critical conditions for success are increasing the alcohol neutralising agent’s strength, increasing the selective (ligno)cellulose dosing, broadening the hybrid nanostructure of the photocatalyst/semiconductor, enhancing the visible-light range absorbance, and increasing the solar energy utilisation efficiency.

Suggested Citation

  • Jhuma Sadhukhan & Bruno G. Pollet & Miles Seaman, 2022. "Hydrogen Production and Storage: Analysing Integration of Photoelectrolysis, Electron Harvesting Lignocellulose, and Atmospheric Carbon Dioxide-Fixing Biosynthesis," Energies, MDPI, vol. 15(15), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5486-:d:874729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John F. Geisz & Ryan M. France & Kevin L. Schulte & Myles A. Steiner & Andrew G. Norman & Harvey L. Guthrey & Matthew R. Young & Tao Song & Thomas Moriarty, 2020. "Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration," Nature Energy, Nature, vol. 5(4), pages 326-335, April.
    2. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    3. Sadhukhan, Jhuma, 2022. "Net zero electricity systems in global economies by life cycle assessment (LCA) considering ecosystem, health, monetization, and soil CO2 sequestration impacts," Renewable Energy, Elsevier, vol. 184(C), pages 960-974.
    4. David W. Wakerley & Moritz F. Kuehnel & Katherine L. Orchard & Khoa H. Ly & Timothy E. Rosser & Erwin Reisner, 2017. "Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst," Nature Energy, Nature, vol. 2(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jhuma Sadhukhan & Kartik Sekar, 2022. "Economic Conditions to Circularize Clinical Plastics," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jhuma Sadhukhan, 2022. "Net-Zero Action Recommendations for Scope 3 Emission Mitigation Using Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Jhuma Sadhukhan & Kartik Sekar, 2022. "Economic Conditions to Circularize Clinical Plastics," Energies, MDPI, vol. 15(23), pages 1-19, November.
    3. Jadhav, Dipak A. & Ghosh Ray, Sreemoyee & Ghangrekar, Makarand M., 2017. "Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1022-1031.
    4. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    5. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    6. Alessio Bosio & Gianluca Foti & Stefano Pasini & Donato Spoltore, 2023. "A Review on the Fundamental Properties of Sb 2 Se 3 -Based Thin Film Solar Cells," Energies, MDPI, vol. 16(19), pages 1-28, September.
    7. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    8. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    9. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    11. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    12. Costas Prouskas & Angelos Mourkas & Georgios Zois & Elefterios Lidorikis & Panos Patsalas, 2022. "A New Type of Architecture of Dye-Sensitized Solar Cells as an Alternative Pathway to Outdoor Photovoltaics," Energies, MDPI, vol. 15(7), pages 1-14, March.
    13. Guanheng Fan & Yiqun Zhang & Xiangfei Ji & Yang Yang, 2022. "Two-Layer Ring Truss-Based Space Solar Power Station," Energies, MDPI, vol. 15(8), pages 1-21, April.
    14. Marcin Zbieć & Justyna Franc-Dąbrowska & Nina Drejerska, 2022. "Wood Waste Management in Europe through the Lens of the Circular Bioeconomy," Energies, MDPI, vol. 15(12), pages 1-9, June.
    15. Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
    16. Cerrillo, Míriam & Viñas, Marc & Bonmatí, August, 2018. "Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane," Renewable Energy, Elsevier, vol. 120(C), pages 178-189.
    17. Mobolaji B. Shemfe & Siddharth Gadkari & Jhuma Sadhukhan, 2018. "Social Hotspot Analysis and Trade Policy Implications of the Use of Bioelectrochemical Systems for Resource Recovery from Wastewater," Sustainability, MDPI, vol. 10(9), pages 1-12, September.
    18. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    19. Abdelrahman Lashin & Mohammad Al Turkestani & Mohamed Sabry, 2020. "Performance of a Thermoelectric Generator Partially Illuminated with Highly Concentrated Light," Energies, MDPI, vol. 13(14), pages 1-12, July.
    20. Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5486-:d:874729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.