IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013570.html
   My bibliography  Save this article

Immobilization of laccase and glucosidase on TiO2/CdS nanoparticles for enhanced H2 production from Spartina alterniflora Loisel

Author

Listed:
  • Yulin, Xiang
  • Zhang, Yongbo
  • Wu, Jingqi
  • Zhu, Jing
  • Cao, Baowei
  • Xiong, Chunyan

Abstract

Photocatalytic conversion of biomass wastes for sustainable biohydrogen generation is a promising method to address the energy and environmental pressures. However, the photo-generated intermediates have high reactive activity leading to the difficulties in controlling the stereoselectivities and chemoselectivities. The effective integration of photocatalysts and enzymes is recognized as an efficient strategy for biohydrogen production. Herein, a photo-enzyme composite catalyst by immobilizing laccase and glucosidase on TiO2/CdS (denoted as LCβ@TiO2/CdS) is first synthesized. The effect of the LCβ@TiO2/CdS on the hydrogen conversion of Spartina alterniflora Loisel under different conditions (light, dark, and alternated light/dark cycle) was investigated. The results indicated that the LCβ@TiO2/CdS had high delignification potential under lighting condition, and the maximum efficiency of 75.1 % emerged at the dose of 4 mg. Subsequently, under the light-dark co-SSF (Simultaneous Saccharification and Fermentation) with 20 min light-dark cycles (LDSSF), the H2 yield reached 316 NmL/g VS after 48 h of reaction, and LCβ@TiO2/CdS could be efficiently reused up to 4 cycles. Therefore, developed LCβ@TiO2/CdS catalyst has a high potential for apply in biohydrogen production.

Suggested Citation

  • Yulin, Xiang & Zhang, Yongbo & Wu, Jingqi & Zhu, Jing & Cao, Baowei & Xiong, Chunyan, 2024. "Immobilization of laccase and glucosidase on TiO2/CdS nanoparticles for enhanced H2 production from Spartina alterniflora Loisel," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013570
    DOI: 10.1016/j.renene.2024.121289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.
    2. Xiang, Yulin & Xiang, Yuxiu & Jiao, Yurong & Wang, Lipeng, 2019. "Surfactant-modified magnetic CaFe-layered double hydroxide for improving enzymatic saccharification and ethanol production of Artemisia ordosica," Renewable Energy, Elsevier, vol. 138(C), pages 465-473.
    3. Akram, Fatima & Haq, Ikram ul & Imran, Wafa & Mukhtar, Hamid, 2018. "Insight perspectives of thermostable endoglucanases for bioethanol production: A review," Renewable Energy, Elsevier, vol. 122(C), pages 225-238.
    4. David W. Wakerley & Moritz F. Kuehnel & Katherine L. Orchard & Khoa H. Ly & Timothy E. Rosser & Erwin Reisner, 2017. "Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst," Nature Energy, Nature, vol. 2(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos S. Osorio-González & Natali Gómez-Falcon & Satinder K. Brar & Antonio Avalos Ramírez, 2022. "Cheese Whey as a Potential Feedstock for Producing Renewable Biofuels: A Review," Energies, MDPI, vol. 15(18), pages 1-15, September.
    2. Mohammad Fakhrulrezza & Joon Ahn & Hyun-Jin Lee, 2022. "Thermal Design of a Biohydrogen Production System Driven by Integrated Gasification Combined Cycle Waste Heat Using Dynamic Simulation," Energies, MDPI, vol. 15(9), pages 1-25, April.
    3. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    4. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    5. Ramprakash, Balasubramani & Lindblad, Peter & Eaton-Rye, Julian J. & Incharoensakdi, Aran, 2022. "Current strategies and future perspectives in biological hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Akram, Fatima & Haq, Ikram ul & Aqeel, Amna & Ahmed, Zeeshan & Shah, Fatima Iftikhar, 2021. "Thermostable cellulases: Structure, catalytic mechanisms, directed evolution and industrial implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Nwosu, Ugochukwu & Wang, Aiguo & Palma, Bruna & Zhao, Heng & Khan, Mohd Adnan & Kibria, Md & Hu, Jinguang, 2021. "Selective biomass photoreforming for valuable chemicals and fuels: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Jie Ye & Chao Wang & Chao Gao & Tao Fu & Chaohui Yang & Guoping Ren & Jian Lü & Shungui Zhou & Yujie Xiong, 2022. "Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Mihajlovski, Katarina & Rajilić-Stojanović, Mirjana & Dimitrijević-Branković, Suzana, 2020. "Enzymatic hydrolysis of waste bread by newly isolated Hymenobacter sp. CKS3: Statistical optimization and bioethanol production," Renewable Energy, Elsevier, vol. 152(C), pages 627-633.
    12. de Andrade, Cristilane M. & Cogo, Antonio J.D. & Perez, Victor Haber & dos Santos, Nathalia F. & Okorokova-Façanha, Anna Lvovna & Justo, Oselys Rodriguez & Façanha, Arnoldo Rocha, 2021. "Increases of bioethanol productivity by S. cerevisiae in unconventional bioreactor under ELF-magnetic field: New advances in the biophysical mechanism elucidation on yeasts," Renewable Energy, Elsevier, vol. 169(C), pages 836-842.
    13. Jhuma Sadhukhan & Bruno G. Pollet & Miles Seaman, 2022. "Hydrogen Production and Storage: Analysing Integration of Photoelectrolysis, Electron Harvesting Lignocellulose, and Atmospheric Carbon Dioxide-Fixing Biosynthesis," Energies, MDPI, vol. 15(15), pages 1-13, July.
    14. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    15. Lin, Haitao & Zhang, Mohang & Chauhan, Bhupendra Singh & Ayed, Hamdi & Khadimallah, Mohamed Amine & Tang, Xiaodong & Mahariq, Ibrahim, 2024. "Development, kinetic analysis, and economic feasibility of different Corn Stover-driven biorefineries to produce biohydrogen, bioethanol, and biomethane: A comparative analysis," Renewable Energy, Elsevier, vol. 237(PA).

    More about this item

    Keywords

    Biohydrogen; Glucosidase; Laccase; TiO2/CdS; LCβ@CdS; LDSSF;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.