IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5471-d874266.html
   My bibliography  Save this article

The Effect of Urban Form on the Heat Island Phenomenon and Human Thermal Comfort: A Comparative Study of UAE Residential Sites

Author

Listed:
  • Ayat Elkhazindar

    (Department of Architecture, College of Architecture, Art, and Design, Ajman University, Ajman 20550, United Arab Emirates)

  • Sahar N. Kharrufa

    (Department of Architecture, College of Architecture, Art, and Design, Ajman University, Ajman 20550, United Arab Emirates)

  • Mohammad S. Arar

    (Department of Architecture, College of Architecture, Art, and Design, Ajman University, Ajman 20550, United Arab Emirates)

Abstract

The Urban Heat Island (UHI) has a detrimental impact on human thermal comfort and the health of city dwellers through raising average temperatures. Urban geometry is one of the factors that affect the intensity of the UHI phenomena. The purpose of this research is to evaluate and compare traditional vs. modern urban forms with respect to temperature and thermal comfort in the United Arab Emirates. Three of each were chosen based on their densities and form. Traditional buildings in the UAE differ from others in the Middle East in that they are primarily single-story, while in the surrounding countries of the region, such as Iran, Iraq, and Saudi Arabia, they are mainly two stories. The UAE climate also has its distinct characteristics. Each configuration was investigated using the ENVI-met urban microclimate simulation software. The comparisons were made for three seasons: summer, winter, and spring. Each configuration was evaluated through four parameters: building shape, street geometry, orientation, and urban density. The results revealed that the low-density traditional urban form exhibited the lowest air temperature in August because it has a low sky view factor (SVF), high height-to-width ratio, and less density. The highest ambient temperature was observed in the sites with low-medium density, lowest height/width ratio, and maximum SVF. The high-density modern urban form displayed lower air temperatures in the summer season than the low and low-medium-density modern urban sites due to the building form, high height-to-width ratio, low SVF, and wind corridors. The traditional compact urban form in Al Fahidi, which has the highest urban density of the six configurations, achieved the best thermal comfort levels in the summer due to the sizable height-to-width ratio and lowest SVF.

Suggested Citation

  • Ayat Elkhazindar & Sahar N. Kharrufa & Mohammad S. Arar, 2022. "The Effect of Urban Form on the Heat Island Phenomenon and Human Thermal Comfort: A Comparative Study of UAE Residential Sites," Energies, MDPI, vol. 15(15), pages 1-31, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5471-:d:874266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    2. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    3. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinlong Yan & Chaohui Yin & Zihao An & Bo Mu & Qian Wen & Yingchao Li & Yali Zhang & Weiqiang Chen & Ling Wang & Yang Song, 2023. "The Influence of Urban Form on Land Surface Temperature: A Comprehensive Investigation from 2D Urban Land Use and 3D Buildings," Land, MDPI, vol. 12(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    2. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    3. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    4. Wang, Nan & Wang, Julian & Feng, Yanxiao, 2022. "Systematic review: Acute thermal effects of artificial light in the daytime," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    6. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    7. Chih-Hong Huang & Hsin-Hua Tsai & Hung-chen Chen, 2020. "Influence of Weather Factors on Thermal Comfort in Subtropical Urban Environments," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    8. Calogera Chiara Bordenca & Laura Giammanco & Alessandro Albanese & Mirko Lo Faso & Domenico Rigoglioso, 2019. "Bioclimatic architecture of residential buildings," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 179-194.
    9. Sukjin Jung & Seonghwan Yoon, 2021. "Analysis of the Effects of Floor Area Ratio Change in Urban Street Canyons on Microclimate and Particulate Matter," Energies, MDPI, vol. 14(3), pages 1-14, January.
    10. Taleghani, Mohammad & Tenpierik, Martin & van den Dobbelsteen, Andy, 2014. "Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change," Renewable Energy, Elsevier, vol. 63(C), pages 486-497.
    11. Muhammad Awais & Sybille Krzywinski & Bianca-Michaela Wölfling & Edith Classen, 2020. "Thermal Simulation of Close-Fitting Sportswear," Energies, MDPI, vol. 13(10), pages 1-13, May.
    12. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    13. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.
    14. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
    15. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    16. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    17. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    18. Al-Sallal, Khaled A. & Al-Rais, Laila, 2012. "Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai," Renewable Energy, Elsevier, vol. 38(1), pages 40-49.
    19. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    20. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5471-:d:874266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.