IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1062-1069.html
   My bibliography  Save this article

Numerical evaluation of urban geometry's control of wind movements in outdoor spaces during winter period. Case of Mediterranean climate

Author

Listed:
  • Bouketta, S.
  • Bouchahm, Y.

Abstract

The impact of urban geometry on thermal comfort in outdoor spaces has been the subject of several studies, but few of them have addressed the control of adverse wind effects in urban humid areas. This work deals with this specific context. It aims to highlight the role of the geometry of urban spaces in the control of the wind, more particularly the “prospect” H/w, in the city of Jijel (Algeria), where wind is the essential element to be reckoned with. It is shown concretely into in-situ measurement campaigns during which microclimatic parameters were recorded simultaneously for tow case studies with distinct geometries spaces between the U-shaped and L-shaped buildings. More precisely, the first step is to identify the most important geometrical parameters and then describe the wind behavior by numerical simulation with the help of the “Envi-met V4” software (licenced). The results show the impact of this geometrical indicator reputed to have a great influence on wind flow, which has the main impact on urban ventilation and must be taken into account in order to control the wind.

Suggested Citation

  • Bouketta, S. & Bouchahm, Y., 2020. "Numerical evaluation of urban geometry's control of wind movements in outdoor spaces during winter period. Case of Mediterranean climate," Renewable Energy, Elsevier, vol. 146(C), pages 1062-1069.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1062-1069
    DOI: 10.1016/j.renene.2019.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    2. Al-Sallal, Khaled A. & Al-Rais, Laila, 2012. "Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai," Renewable Energy, Elsevier, vol. 38(1), pages 40-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Feng & Wei Ding & Yingdi Yin & Qixian Lin & Meng Zheng & Miaomiao Fei, 2021. "Optimization Strategy of Traditional Block Form Based on Field Investigation—A Case Study of Xi’an Baxian’an, China," IJERPH, MDPI, vol. 18(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    2. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    3. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    4. Lee, Kyung Sun & Lee, Jae Wook & Lee, Jae Seung, 2016. "Feasibility study on the relation between housing density and solar accessibility and potential uses," Renewable Energy, Elsevier, vol. 85(C), pages 749-758.
    5. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    6. Rodríguez-Algeciras, José & Tablada, Abel & Chaos-Yeras, Mabel & De la Paz, Guillermo & Matzarakis, Andreas, 2018. "Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba," Renewable Energy, Elsevier, vol. 125(C), pages 840-856.
    7. Kim, Se Woong & Brown, Robert D., 2021. "Urban heat island (UHI) variations within a city boundary: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    9. Carlos Rubio-Bellido & Jesus A. Pulido-Arcas & Jose M. Cabeza-Lainez, 2015. "Adaptation Strategies and Resilience to Climate Change of Historic Dwellings," Sustainability, MDPI, vol. 7(4), pages 1-19, March.
    10. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    11. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    12. Kim, Se Woong & Brown, Robert D., 2023. "Development of a micro-scale heat island (MHI) model to assess the thermal environment in urban street canyons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Shareef, Sundus & Altan, Hasim, 2022. "Urban block configuration and the impact on energy consumption: A case study of sinuous morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Ayat Elkhazindar & Sahar N. Kharrufa & Mohammad S. Arar, 2022. "The Effect of Urban Form on the Heat Island Phenomenon and Human Thermal Comfort: A Comparative Study of UAE Residential Sites," Energies, MDPI, vol. 15(15), pages 1-31, July.
    15. Zhang, Hongjie & Yao, Runming & Luo, Qing & Wang, Wenbo, 2022. "A mathematical model for a rapid calculation of the urban canyon albedo and its applications," Renewable Energy, Elsevier, vol. 197(C), pages 836-851.
    16. Pigliautile, Ilaria & Chàfer, Marta & Pisello, Anna Laura & Pérez, Gabriel & Cabeza, Luisa F., 2020. "Inter-building assessment of urban heat island mitigation strategies: Field tests and numerical modelling in a simplified-geometry experimental set-up," Renewable Energy, Elsevier, vol. 147(P1), pages 1663-1675.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1062-1069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.