IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p674-d726990.html
   My bibliography  Save this article

A Comprehensive Review on Supercapacitor Applications and Developments

Author

Listed:
  • Mustafa Ergin Şahin

    (Department of Electrical and Electronics Engineering, Recep Tayyip Erdoğan University, Rize 53100, Turkey)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, Pontoppidantstraede, 9220 Aalborg, Denmark)

  • Ariya Sangwongwanich

    (Department of Energy Technology, Aalborg University, Pontoppidantstraede, 9220 Aalborg, Denmark)

Abstract

The storage of enormous energies is a significant challenge for electrical generation. Researchers have studied energy storage methods and increased efficiency for many years. In recent years, researchers have been exploring new materials and techniques to store more significant amounts of energy more efficiently. In particular, renewable energy sources and electric vehicle technologies are triggering these scientific studies. Scientists and manufacturers recently proposed the supercapacitor (SC) as an alternating or hybrid storage device. This paper aims to provide a comprehensive review of SC applications and their developments. Accordingly, a detailed literature review was first carried out. The historical results of SCs are revealed in this paper. The structure, working principle, and materials of SC are given in detail to be analysed more effectively. The advantages and disadvantages, market profile, and new technologies with manufacturer corporations are investigated to produce a techno-economic analysis of SCs. The electric vehicle, power systems, hybrid energy storage systems with integration of renewable energy sources, and other applications of SCs are investigated in this paper. Additionally, SC modelling design principles with charge and discharge tests are explored. Other components and their price to produce a compact module for high power density are also investigated.

Suggested Citation

  • Mustafa Ergin Şahin & Frede Blaabjerg & Ariya Sangwongwanich, 2022. "A Comprehensive Review on Supercapacitor Applications and Developments," Energies, MDPI, vol. 15(3), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:674-:d:726990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Li & Jiangwei Chu & Shufa Sun, 2022. "High-Performance Flywheel Hybrid Powertrain," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    2. Yibo Deng & Chushan Li & Yan Deng & Ting Chen & Shaoyu Feng & Yujie Chu & Chengmin Li, 2023. "Energy Efficiency Optimization of Collaborative Power Supply System with Supercapacitor Storages," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    4. Christodoulos Katis & Athanasios Karlis, 2023. "Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues," Energies, MDPI, vol. 16(3), pages 1-34, January.
    5. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Tamíris Pacheco da Costa & James Gillespie & Katarzyna Pelc & Natalie Shenker & Gillian Weaver & Ramakrishnan Ramanathan & Fionnuala Murphy, 2023. "An Organisational-Life Cycle Assessment Approach for Internet of Things Technologies Implementation in a Human Milk Bank," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    7. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Paweł Ruchała & Olga Orynycz & Wit Stryczniewicz & Karol Tucki, 2023. "Possibility of Energy Recovery from Airflow around an SUV-Class Car Based on Wind Tunnel Testing," Energies, MDPI, vol. 16(19), pages 1-16, October.
    9. Mohammad Kamrul Hasan & AKM Ahasan Habib & Shayla Islam & Mohammed Balfaqih & Khaled M. Alfawaz & Dalbir Singh, 2023. "Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations," Energies, MDPI, vol. 16(3), pages 1-20, January.
    10. Ģirts Staņa & Jānis Voitkāns & Kaspars Kroičs, 2023. "Supercapacitor Constant-Current and Constant-Power Charging and Discharging Comparison under Equal Boundary Conditions for DC Microgrid Application," Energies, MDPI, vol. 16(10), pages 1-27, May.
    11. Khabibulla A. Abdullin & Maratbek T. Gabdullin & Zhanar K. Kalkozova & Shyryn T. Nurbolat & Mojtaba Mirzaeian, 2023. "Symmetrical Composite Supercapacitor Based on Activated Carbon and Cobalt Nanoparticles with High Cyclic Stability and Current Load," Energies, MDPI, vol. 16(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Dias & Paulo Alexandre & Nuno Teixeira & Mariana Chambino, 2023. "Clean Energy Stocks: Resilient Safe Havens in the Volatility of Dirty Cryptocurrencies," Energies, MDPI, vol. 16(13), pages 1-24, July.
    2. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    3. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.
    4. Divya R. Nair & Manjula G. Nair & Tripta Thakur, 2022. "A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement," Energies, MDPI, vol. 15(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:674-:d:726990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.