IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3345-d1430923.html
   My bibliography  Save this article

Neural Network Energy Management-Based Nonlinear Control of a DC Micro-Grid with Integrating Renewable Energies

Author

Listed:
  • Khalil Jouili

    (Laboratory of Advanced Systems, Polytechnic School of Tunisia (EPT), B.P. 743, Marsa 2078, Tunisia)

  • Mabrouk Jouili

    (ETIS, CNRS UMR 8051, CY Cergy Paris University, ENSEA, 6 Avenue du Ponceau, 95014 Cergy, France)

  • Alsharef Mohammad

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Abdulrahman J. Babqi

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Walid Belhadj

    (Physics Department, Faculty of Science, Umm AL-Qura University, P.O. Box 715, Makkah 24382, Saudi Arabia)

Abstract

The broad acceptance of sustainable and renewable energy sources as a means of integrating them into electrical power networks is essential to promote sustainable development. Microgrids using direct currents (DCs) are becoming more and more popular because of their great energy efficiency and straightforward design. In this work, we discuss the control of a PV-based renewable energy system and a battery- and supercapacitor-based energy storage system in a DC microgrid. We describe a hierarchical control approach based on sliding-mode controllers and the Lyapunov stability theory. To balance the load and generation, a fuzzy logic-based energy management system has been created. Using a neural network, maximum power defects for the PV system were determined. The global asymptotic stability of the framework has been verified using Lyapunov stability analysis. In order to simulate the proposed DC microgrid and controllers, MATLAB/SimulinkR (2019a) was utilized. The outcomes show that the system operates effectively with changing production and consumption.

Suggested Citation

  • Khalil Jouili & Mabrouk Jouili & Alsharef Mohammad & Abdulrahman J. Babqi & Walid Belhadj, 2024. "Neural Network Energy Management-Based Nonlinear Control of a DC Micro-Grid with Integrating Renewable Energies," Energies, MDPI, vol. 17(13), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3345-:d:1430923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Divya R. Nair & Manjula G. Nair & Tripta Thakur, 2022. "A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Khalil Jouili & Adel Madani, 2023. "Nonlinear Lyapunov Control of a Photovoltaic Water Pumping System," Energies, MDPI, vol. 16(5), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    2. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.
    3. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    4. Ángel Adrián Orta-Quintana & Rogelio Ernesto García-Chávez & Ramón Silva-Ortigoza & Magdalena Marciano-Melchor & Miguel Gabriel Villarreal-Cervantes & José Rafael García-Sánchez & Rocío García-Cortés , 2023. "Sensorless Tracking Control Based on Sliding Mode for the “Full-Bridge Buck Inverter–DC Motor” System Fed by PV Panel," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    5. Paul Arévalo & Francisco Jurado, 2024. "Impact of Artificial Intelligence on the Planning and Operation of Distributed Energy Systems in Smart Grids," Energies, MDPI, vol. 17(17), pages 1-22, September.
    6. Yang, Shengyao & Zhu, Meng Nan & Yu, Haiyan, 2024. "Are artificial intelligence and blockchain the key to unlocking the box of clean energy?," Energy Economics, Elsevier, vol. 134(C).
    7. Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    8. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    9. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3345-:d:1430923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.