Decision Support Tool to Enable Real-Time Data-Driven Building Energy Retrofitting Design
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
- Maia, Iná & Kranzl, Lukas & Müller, Andreas, 2021. "New step-by-step retrofitting model for delivering optimum timing," Applied Energy, Elsevier, vol. 290(C).
- Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
- Lotta Kannari & Jussi Kiljander & Kalevi Piira & Jouko Piippo & Pekka Koponen, 2021. "Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator," Forecasting, MDPI, vol. 3(2), pages 1-13, April.
- Alex Gonzalez Caceres & Muriel Diaz, 2018. "Usability of the EPC Tools for the Profitability Calculation of a Retrofitting in a Residential Building," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
- Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
- Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
- Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
- Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
- Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
- Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
- Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
- Marco Castagna & Olga Somova & Cristian Pozza & Giuseppe De Michele & Federico Garzia & Daniele Antonucci & Roberta Pernetti, 2024. "Optimizing Energy Renovation in Building Portfolios: Approach and Decision-Making Platform," Energies, MDPI, vol. 17(22), pages 1-17, November.
- Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
- Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
- Mahmud, Khizir & Amin, Uzma & Hossain, M.J. & Ravishankar, Jayashri, 2018. "Computational tools for design, analysis, and management of residential energy systems," Applied Energy, Elsevier, vol. 221(C), pages 535-556.
- García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul, 2016. "An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings," Energy, Elsevier, vol. 117(P2), pages 506-522.
- Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Ferahtia, Seydali & Rezk, Hegazy & Olabi, A.G. & Alhumade, Hesham & Bamufleh, Hisham S. & Doranehgard, Mohammad Hossein & Abdelkareem, Mohammad Ali, 2022. "Optimal techno-economic multi-level energy management of renewable-based DC microgrid for commercial buildings applications," Applied Energy, Elsevier, vol. 327(C).
- Kyung Hwa Cho & Sun Sook Kim, 2019. "Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings," Energies, MDPI, vol. 12(6), pages 1-17, March.
- Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
- Thrampoulidis, Emmanouil & Hug, Gabriela & Orehounig, Kristina, 2023. "Approximating optimal building retrofit solutions for large-scale retrofit analysis," Applied Energy, Elsevier, vol. 333(C).
- Lizana, Jesus & Serrano-Jimenez, Antonio & Ortiz, Carlos & Becerra, Jose A. & Chacartegui, Ricardo, 2018. "Energy assessment method towards low-carbon energy schools," Energy, Elsevier, vol. 159(C), pages 310-326.
- Yung Yau & Huiying (Cynthia) Hou & Ka Chi Yip & Queena Kun Qian, 2021. "Transaction Cost and Agency Perspectives on Eco-Certification of Existing Buildings: A Study of Hong Kong," Energies, MDPI, vol. 14(19), pages 1-20, October.
- Jin, Xiaoyu & Xiao, Fu & Zhang, Chong & Chen, Zhijie, 2022. "Semi-supervised learning based framework for urban level building electricity consumption prediction," Applied Energy, Elsevier, vol. 328(C).
More about this item
Keywords
retrofitting design; energy-efficient buildings; decision support; IoT;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5408-:d:872580. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.