IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5537-d1514868.html
   My bibliography  Save this article

Optimizing Energy Renovation in Building Portfolios: Approach and Decision-Making Platform

Author

Listed:
  • Marco Castagna

    (Institute for Renewable Energy, EURAC Research, Viale Druso/Drususallee 1, 39100 Bolzano, Italy)

  • Olga Somova

    (Institute for Renewable Energy, EURAC Research, Viale Druso/Drususallee 1, 39100 Bolzano, Italy)

  • Cristian Pozza

    (Institute for Renewable Energy, EURAC Research, Viale Druso/Drususallee 1, 39100 Bolzano, Italy)

  • Giuseppe De Michele

    (Institute for Renewable Energy, EURAC Research, Viale Druso/Drususallee 1, 39100 Bolzano, Italy)

  • Federico Garzia

    (Institute for Renewable Energy, EURAC Research, Viale Druso/Drususallee 1, 39100 Bolzano, Italy)

  • Daniele Antonucci

    (Institute for Renewable Energy, EURAC Research, Viale Druso/Drususallee 1, 39100 Bolzano, Italy)

  • Roberta Pernetti

    (Department of Public Health, Experimental and Forensic Medicine, Università degli Studi di Pavia, Via Forlanini 2, 27100 Pavia, Italy)

Abstract

The building sector contributes significantly to energy consumption and greenhouse gas emissions, with many buildings being energy inefficient. In response, the European Green Deal promotes improving energy efficiency to support decarbonization goals. However, managing energy consumption and integrating data from multiple sources presents challenges, especially for large building portfolios. This study introduces a novel methodology designed to optimize energy renovation strategies, balancing technical, financial, and maintenance considerations. The methodology is implemented in CERPlan 1.0, a web-based decision-support platform that combines data on building energy performance, renovation costs, and maintenance needs. Through simulations, CERPlan 1.0 helps decision-makers prioritize retrofit interventions based on economic criteria while leveraging synergies between energy improvements and regular maintenance. Application of this methodology to real estate portfolios reveals opportunities to enhance cost-effectiveness and energy savings. The results show that integrating maintenance into renovation planning reduces payback times and allows for more comprehensive renovation strategies. The conclusions highlight CERPlan 1.0’s potential to improve decision-making, making building renovations more efficient and sustainable.

Suggested Citation

  • Marco Castagna & Olga Somova & Cristian Pozza & Giuseppe De Michele & Federico Garzia & Daniele Antonucci & Roberta Pernetti, 2024. "Optimizing Energy Renovation in Building Portfolios: Approach and Decision-Making Platform," Energies, MDPI, vol. 17(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5537-:d:1514868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    2. Diego Menegon & Daniela Lobosco & Leopoldo Micò & Joana Fernandes, 2021. "Labeling of Installed Heating Appliances in Residential Buildings: An Energy Labeling Methodology for Improving Consumers’ Awareness," Energies, MDPI, vol. 14(21), pages 1-17, October.
    3. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    2. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    3. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    4. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
    6. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    7. Kalevi Piira & Julia Kantorovitch & Lotta Kannari & Jouko Piippo & Nam Vu Hoang, 2022. "Decision Support Tool to Enable Real-Time Data-Driven Building Energy Retrofitting Design," Energies, MDPI, vol. 15(15), pages 1-17, July.
    8. Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
    9. Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
    10. Mahmud, Khizir & Amin, Uzma & Hossain, M.J. & Ravishankar, Jayashri, 2018. "Computational tools for design, analysis, and management of residential energy systems," Applied Energy, Elsevier, vol. 221(C), pages 535-556.
    11. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul, 2016. "An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings," Energy, Elsevier, vol. 117(P2), pages 506-522.
    12. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Ferahtia, Seydali & Rezk, Hegazy & Olabi, A.G. & Alhumade, Hesham & Bamufleh, Hisham S. & Doranehgard, Mohammad Hossein & Abdelkareem, Mohammad Ali, 2022. "Optimal techno-economic multi-level energy management of renewable-based DC microgrid for commercial buildings applications," Applied Energy, Elsevier, vol. 327(C).
    14. Kyung Hwa Cho & Sun Sook Kim, 2019. "Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings," Energies, MDPI, vol. 12(6), pages 1-17, March.
    15. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    16. Thrampoulidis, Emmanouil & Hug, Gabriela & Orehounig, Kristina, 2023. "Approximating optimal building retrofit solutions for large-scale retrofit analysis," Applied Energy, Elsevier, vol. 333(C).
    17. Lizana, Jesus & Serrano-Jimenez, Antonio & Ortiz, Carlos & Becerra, Jose A. & Chacartegui, Ricardo, 2018. "Energy assessment method towards low-carbon energy schools," Energy, Elsevier, vol. 159(C), pages 310-326.
    18. Yung Yau & Huiying (Cynthia) Hou & Ka Chi Yip & Queena Kun Qian, 2021. "Transaction Cost and Agency Perspectives on Eco-Certification of Existing Buildings: A Study of Hong Kong," Energies, MDPI, vol. 14(19), pages 1-20, October.
    19. Jin, Xiaoyu & Xiao, Fu & Zhang, Chong & Chen, Zhijie, 2022. "Semi-supervised learning based framework for urban level building electricity consumption prediction," Applied Energy, Elsevier, vol. 328(C).
    20. Chen, Yixing & Deng, Zhang & Hong, Tianzhen, 2020. "Automatic and rapid calibration of urban building energy models by learning from energy performance database," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5537-:d:1514868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.