IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5354-d870118.html
   My bibliography  Save this article

Preparation and Characterization of Microencapsulated Phase Change Materials for Solar Heat Collection

Author

Listed:
  • Hongbing Chen

    (School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China)

  • Rui Zhao

    (State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, China)

  • Congcong Wang

    (School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China)

  • Lianyuan Feng

    (School of Civil Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China
    Hebei Technology Innovation Center of Phase Change, Thermal Management of Data Center, Cangzhou 061001, China)

  • Shuqian Li

    (School of Civil Engineering, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China
    Hebei Technology Innovation Center of Phase Change, Thermal Management of Data Center, Cangzhou 061001, China)

  • Yutong Gong

    (School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China)

Abstract

In this paper, a new type of microencapsulated phase change materials (MPCMs) with docosane as the core and titanium dioxide (TiO 2 ) as the shell was prepared by in situ polymerization. Its phase transition temperature was approximately 40 °C, and it can be used as a phase change material (PCM) in a low-temperature solar heat collection system. The properties of the new material were examined including the microstructure, the chemical elements on the surface of the microcapsules, and thermal conductivity. In addition, to obtain the optimized formula of the microcapsules, single-factor analysis on the emulsifier type, its mass fraction, ultrasonic oscillation time, pH, and core–shell ratio were performed. The results showed that the MPCMs prepared in this paper had a particle size of 2–5 μm and were spherical. Its surface was uniform and smooth without cracks, and the TiO 2 was well dispersed around the docosane, completely coating the docosane without impurities. The MPCMs had good performance in terms of thermal properties and heat storage when using 0.40% SDS as an emulsifier, 10 min ultrasonic, a 3.5 pH value, and a 1:1 core–shell ratio. However, the stirring method, time, and experimental reaction temperature also affected the properties of the material, which was not studied in this experiment. We will continue to study these factors in the future.

Suggested Citation

  • Hongbing Chen & Rui Zhao & Congcong Wang & Lianyuan Feng & Shuqian Li & Yutong Gong, 2022. "Preparation and Characterization of Microencapsulated Phase Change Materials for Solar Heat Collection," Energies, MDPI, vol. 15(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5354-:d:870118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
    2. SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
    3. Zhao, Aiqin & An, Jinliang & Yang, Jinglei & Yang, En-Hua, 2018. "Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell," Applied Energy, Elsevier, vol. 215(C), pages 468-478.
    4. Yu, Shiyu & Wang, Xiaodong & Wu, Dezhen, 2014. "Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluat," Applied Energy, Elsevier, vol. 114(C), pages 632-643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengcheng Wang & Hongkun Ma & Abdalqader Ahmad & Hui Yang & Mingxi Ji & Boyang Zou & Binjian Nie & Jie Chen & Lige Tong & Li Wang & Yulong Ding, 2022. "Discharging Behavior of a Fixed-Bed Thermochemical Reactor under Different Charging Conditions: Modelling and Experimental Validation," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Li, Sheng & Gao, Jinshuang & Zhang, Lizhe & Wu, Fan & Zhao, Yazhou & Zhang, Xuejun, 2024. "Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    2. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    3. Zhang, Xiaoyu & Wang, Xiaodong & Wu, Dezhen, 2016. "Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectivene," Energy, Elsevier, vol. 111(C), pages 498-512.
    4. Zhang, Ying & Wang, Xiaodong & Wu, Dezhen, 2016. "Microencapsulation of n-dodecane into zirconia shell doped with rare earth: Design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage," Energy, Elsevier, vol. 97(C), pages 113-126.
    5. Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
    6. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    7. Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
    8. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    9. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    10. Lashgari, Somayeh & Arabi, Hassan & Mahdavian, Ali Reza & Ambrogi, Veronica, 2017. "Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell," Applied Energy, Elsevier, vol. 190(C), pages 612-622.
    11. Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
    12. Wang, Tingyu & Jiang, Yan & Huang, Jin & Wang, Shuangfeng, 2018. "High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network," Applied Energy, Elsevier, vol. 218(C), pages 184-191.
    13. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    14. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    15. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    16. Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
    17. Tao, Jialu & Luan, Jingde & Liu, Yue & Qu, Daoyu & Yan, Zheng & Ke, Xin, 2022. "Technology development and application prospects of organic-based phase change materials: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
    19. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2014. "Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials," Applied Energy, Elsevier, vol. 134(C), pages 456-468.
    20. Jiang, Binbin & Wang, Xiaodong & Wu, Dezhen, 2017. "Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications," Applied Energy, Elsevier, vol. 201(C), pages 20-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5354-:d:870118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.