IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5293-d868171.html
   My bibliography  Save this article

Laser Profilometry on Micro-PTC

Author

Listed:
  • Gianluca Marotta

    (National Research Council—National Institute of Optics (CNR-INO), 50125 Florence, Italy)

  • Daniela Fontani

    (National Research Council—National Institute of Optics (CNR-INO), 50125 Florence, Italy)

  • Franco Francini

    (National Research Council—National Institute of Optics (CNR-INO), 50125 Florence, Italy)

  • David Jafrancesco

    (National Research Council—National Institute of Optics (CNR-INO), 50125 Florence, Italy)

  • Maurizio De Lucia

    (Department of Industrial Engineering, University of Florence, 50139 Florence, Italy)

  • Paola Sansoni

    (National Research Council—National Institute of Optics (CNR-INO), 50125 Florence, Italy)

Abstract

Profilometry is useful in detecting surface faults on solar concentrators, which can be imperfectly manufactured, thus affecting system performance. Profilometric analyses are performed on a micro-parabolic trough collector (m-PTC), with reduced sizes and greater mirror curvature than a usual PTC. The peculiar dimensions and shape of this micro-PTC request to develop a specific configuration of laser profilometry. It includes a laser diode with a converging lens placed in front of it, ensuring that the mirror curvature does not affect the beam reflection. A new method to calculate the spot position furnishes the reflected beam center even if it lies outside the target, giving it a virtual expansion. The profile is assessed with an iterative calculation, starting from a first point, physically measured. The results are the 3D profile reconstruction of the parabolic mirror and a map of the slope error for each mirror point. It also estimates the intercept factor , a parameter fundamental to optimize the m-PTC system, whose value is in agreement with a structured light measurement on the same object. This intercept factor was obtained averaging the local intercept factor calculated for each mirror point, which individuates the mirror portions not focusing the sunrays on the tube.

Suggested Citation

  • Gianluca Marotta & Daniela Fontani & Franco Francini & David Jafrancesco & Maurizio De Lucia & Paola Sansoni, 2022. "Laser Profilometry on Micro-PTC," Energies, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5293-:d:868171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sansoni, P. & Fontani, D. & Francini, F. & Giannuzzi, A. & Sani, E. & Mercatelli, L. & Jafrancesco, D., 2011. "Optical collection efficiency and orientation of a solar trough medium-power plant installed in Italy," Renewable Energy, Elsevier, vol. 36(9), pages 2341-2347.
    2. Li, Qiyuan & Zheng, Cheng & Shirazi, Ali & Bany Mousa, Osama & Moscia, Fabio & Scott, Jason A. & Taylor, Robert A., 2017. "Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications," Applied Energy, Elsevier, vol. 190(C), pages 1159-1173.
    3. Aqachmar, Zineb & Allouhi, Amine & Jamil, Abdelmajid & Gagouch, Belgacem & Kousksou, Tarik, 2019. "Parabolic trough solar thermal power plant Noor I in Morocco," Energy, Elsevier, vol. 178(C), pages 572-584.
    4. Gianluca Marotta & Paola Sansoni & Franco Francini & David Jafrancesco & Maurizio De Lucia & Daniela Fontani, 2020. "Structured Light Profilometry on m-PTC," Energies, MDPI, vol. 13(21), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Marotta & Paola Sansoni & Franco Francini & David Jafrancesco & Maurizio De Lucia & Daniela Fontani, 2020. "Structured Light Profilometry on m-PTC," Energies, MDPI, vol. 13(21), pages 1-17, October.
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    4. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    5. Jin, Rihui & Zheng, Hongfei & Ma, Xinglong & Zhao, Yunsheng, 2020. "Performance investigation of integrated concentrating solar air heater with curved Fresnel lens as the cover," Energy, Elsevier, vol. 194(C).
    6. Kamath, Harsh G. & Majumdar, Rudrodip & Krishnan, A.V. & Srikanth, R., 2022. "Cost and environmental benefits of coal-concentrated solar power (CSP) hybridization in India," Energy, Elsevier, vol. 240(C).
    7. López-González, D. & Valverde, J.L. & Sánchez, P. & Sanchez-Silva, L., 2013. "Characterization of different heat transfer fluids and degradation study by using a pilot plant device operating at real conditions," Energy, Elsevier, vol. 54(C), pages 240-250.
    8. Guillermo Benítez-Olivares & Alejandro Torres-Aldaco & Raúl Lugo-Leyte & José Javier Valencia-López & Luis Alberto Romero-Vázquez & Helen D. Lugo-Méndez, 2025. "The Influence of the Cu-Al 2 O 3 Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant," Energies, MDPI, vol. 18(2), pages 1-28, January.
    9. Chen, Erjian & Xie, Mingxi & Jia, Teng & Zhao, Yao & Dai, Yanjun, 2022. "Performance assessment of a solar-assisted absorption-compression system for both heating and cooling," Applied Energy, Elsevier, vol. 328(C).
    10. Balghouthi, Moncef & Trabelsi, Seif Eddine & Amara, Mahmoud Ben & Ali, Abdessalem Bel Hadj & Guizani, Amenallah, 2016. "Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1227-1248.
    11. Khanmohammadi, Shoaib & Kizilkan, Onder & Ahmed, Faraedoon Waly, 2020. "Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 156(C), pages 1348-1360.
    12. Habib Shoeibi & Azad Jarrahian & Mehdi Mehrpooya & Ehsanolah Assaerh & Mohsen Izadi & Fathollah Pourfayaz, 2022. "Mathematical Modeling and Simulation of a Compound Parabolic Concentrators Collector with an Absorber Tube," Energies, MDPI, vol. 16(1), pages 1-20, December.
    13. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    14. Divya Zindani & Saikat Ranjan Maity & Sumit Bhowmik, 2022. "A novel decision-making tool for performance evaluation of vegetable oils used as heat transfer fluids in concentrated solar power plants," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13334-13377, November.
    15. Zhou, Ran & Wang, Ruilin & Xing, Chenjian & Sun, Jian & Guo, Yafei & Li, Weiling & Qu, Wanjun & Hong, Hui & Zhao, Chuanwen, 2022. "Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism," Energy, Elsevier, vol. 251(C).
    16. Hanif Tayarani & Aditya Ramji, 2022. "Life Cycle Assessment of Hydrogen Transportation Pathways via Pipelines and Truck Trailers: Implications as a Low Carbon Fuel," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    17. Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
    18. Enkhbayar Shagdar & Bachirou Guene Lougou & Batmunkh Sereeter & Yong Shuai & Azeem Mustafa & Enkhjin Ganbold & Dongmei Han, 2022. "Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions," Energies, MDPI, vol. 15(4), pages 1-24, February.
    19. Li, Longlong & Li, Huairui & Xu, Qian & Huang, Weidong, 2015. "Performance analysis of Azimuth Tracking Fixed Mirror Solar Concentrator," Renewable Energy, Elsevier, vol. 75(C), pages 722-732.
    20. Liang, Shen & Ma, Xinglong & He, Qian & Wang, Zhenzhen & Zheng, Hongfei, 2023. "Concentrating behavior of elastic fresnel lens solar concentrator in tensile deformation caused zoom," Renewable Energy, Elsevier, vol. 209(C), pages 471-480.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5293-:d:868171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.