IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5158-d864064.html
   My bibliography  Save this article

Energy Savings in Production Processes as a Key Component of the Global Energy Problem—The Introduction to the Special Issue of Energies

Author

Listed:
  • Wieslaw Urban

    (Faculty on Engineering Management, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland)

Abstract

It is critical to address energy issues as we move through the first half of the twenty-first century, as societies become firmly aware of the consequences of resource scarcity and the disastrous consequences of climate change from human activity (especially heavy industry) [...]

Suggested Citation

  • Wieslaw Urban, 2022. "Energy Savings in Production Processes as a Key Component of the Global Energy Problem—The Introduction to the Special Issue of Energies," Energies, MDPI, vol. 15(14), pages 1-4, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5158-:d:864064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Celani de Macedo, Alessandra & Cantore, Nicola & Barbier, Laura & Matteini, Marco & Pasqualetto, Giorgia, 2020. "The Impact of Industrial Energy Efficiency on Economic and Social Indicators," FACTS: Firms And Cities Towards Sustainability 305185, Fondazione Eni Enrico Mattei (FEEM) > FACTS: Firms And Cities Towards Sustainability.
    2. Andrei, Mariana & Thollander, Patrik & Sannö, Anna, 2022. "Knowledge demands for energy management in manufacturing industry - A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    4. Keith Smith, 2009. "Climate change and radical energy innovation: the policy issues," Working Papers on Innovation Studies 20090101, Centre for Technology, Innovation and Culture, University of Oslo.
    5. Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
    6. Radosław Wolniak & Adam Wyszomirski & Marcin Olkiewicz & Anna Olkiewicz, 2021. "Environmental Corporate Social Responsibility Activities in Heating Industry—Case Study," Energies, MDPI, vol. 14(7), pages 1-19, March.
    7. Piotr Kordel & Radosław Wolniak, 2021. "Technology Entrepreneurship and the Performance of Enterprises in the Conditions of Covid-19 Pandemic: The Fuzzy Set Analysis of Waste to Energy Enterprises in Poland," Energies, MDPI, vol. 14(13), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Ejsmont & Bartlomiej Gladysz & Rodolfo Haber, 2024. "Energy Challenges and Smart Applications in Production Systems," Energies, MDPI, vol. 17(22), pages 1-6, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Zhong, Xiaoqing & Zhong, Weifeng & Lin, Zhenjia & Zhou, Guoxu & Lai, Loi Lei & Xie, Shengli & Yan, Jinyue, 2024. "Localized electricity and carbon allowance management for interconnected discrete manufacturing systems considering algorithmic and physical feasibility," Applied Energy, Elsevier, vol. 372(C).
    3. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    4. Andrei, Mariana & Rohdin, Patrik & Thollander, Patrik & Wallin, Johanna & Tångring, Magnus, 2024. "Exploring a decarbonization framework for a Swedish automotive paint shop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    5. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
    6. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    7. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    8. Hee-Kwan Shin & Jae-Min Cho & Eul-Bum Lee, 2019. "Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    9. Comincioli, Nicola & Vergalli, Sergio, 2020. "Effects of Carbon Tax on Electricity Price Volatility: Empirical Evidences from the Australian Market," 2030 Agenda 305205, Fondazione Eni Enrico Mattei (FEEM).
    10. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    11. Zuberi, M. Jibran S. & Santoro, Marina & Eberle, Armin & Bhadbhade, Navdeep & Sulzer, Sabine & Wellig, Beat & Patel, Martin K., 2020. "A detailed review on current status of energy efficiency improvement in the Swiss industry sector," Energy Policy, Elsevier, vol. 137(C).
    12. Epicoco, Marianna, 2016. "Patterns of innovation and organizational demography in emerging sustainable fields: An analysis of the chemical sector," Research Policy, Elsevier, vol. 45(2), pages 427-441.
    13. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    14. Su-Yol Lee, 2021. "Sustainable Supply Chain Management, Digital-Based Supply Chain Integration, and Firm Performance: A Cross-Country Empirical Comparison between South Korea and Vietnam," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    15. Marianna Epicoco, 2016. "Patterns of innovation and organizational demography in emerging sustainable fields: An analysis of the chemical sector," Post-Print hal-03381224, HAL.
    16. Boulamanti, Aikaterini & Moya, Jose A., 2017. "Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1205-1212.
    17. Andrei, Mariana & Thollander, Patrik & Sannö, Anna, 2022. "Knowledge demands for energy management in manufacturing industry - A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
    19. Mergenthaler, Pieter & Schinkel, Arndt-Peter & Tsatsaronis, George, 2017. "Application of exergoeconomic, exergoenvironmental, and advanced exergy analyses to Carbon Black production," Energy, Elsevier, vol. 137(C), pages 898-907.
    20. Olga Pilipczuk, 2021. "Determinants of Managerial Competences Transformation in the Polish Energy Industry," Energies, MDPI, vol. 14(20), pages 1-27, October.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5158-:d:864064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.